Abstract
Ontologies have been frequently used for representing domain knowledge. They have lots of applications in semantic knowledge extraction. However, learning ontologies especially from unstructured data is a difficult yet an interesting challenge. In this paper, we introduce a pipeline for learning ontology from a text corpus in a semi-automated fashion using Natural Language Processing (NLP) and Formal Concept Analysis (FCA). We apply our proposed method on a small given corpus that consists of some news documents in IT and pharmaceutical domain. We then discuss the potential applications of the proposed model and ideas on how to improve it even further.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allen, J.F.: Natural language processing. In: Encyclopedia of Cognitive Science (2006)
Bendaoud, R., Hacene, A.M.R., Toussaint, Y., Delecroix, B., Napoli, A.: Text-based ontology construction using relational concept analysis. In: International Workshop on Ontology Dynamics-IWOD 2007 (2007)
Bordat, J.P.: Calcul pratique du treillis de galois d’une correspondance. Mathématiques et Sciences humaines 96, 31–47 (1986)
Carpineto, C., Romano, G.: GALOIS: an order-theoretic approach to conceptual clustering. In: Proceedings of ICML, vol. 293, pp. 33–40 (1993)
Castellanos, A., Cigarrán, J., García-Serrano, A.: Formal concept analysis for topic detection: a clustering quality experimental analysis. Inf. Syst. 66, 24–42 (2017)
Chowdhury, G.G.: Natural language processing. Ann. Rev. Inf. Sci. Technol. 37(1), 51–89 (2003)
Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora using formal concept analysis. J. Artif. Intell. Res. (JAIR) 24, 305–339 (2005)
Dou, D., Wang, H., Liu, H.: Semantic data mining: a survey of ontology-based approaches. In: 2015 IEEE International Conference on Semantic Computing (ICSC), pp. 244–251. IEEE (2015)
Ganter, B.: Two Basic Algorithms in Concept Analysis. Springer, Heidelberg (2010)
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, New York (2012)
Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering: with Examples from the Areas of Knowledge Management, e-Commerce and the Semantic Web. Springer, London (2006)
Krajca, P., Vychodil, V.: Distributed algorithm for computing formal concepts using map-reduce framework. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 333–344. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03915-7_29
Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intell. Syst. 16(2), 72–79 (2001)
Moraes, S., de Lima, V.L.S.: Combining formal concept analysis and semantic information for building ontological structures from texts: an exploratory study. In: LREC, pp. 3653–3660 (2012)
Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Inf. Process. Lett. 71(5), 199–204 (1999)
Velardi, P., Fabriani, P., Missikoff, M.: Using text processing techniques to automatically enrich a domain ontology. In: Proceedings of the international conference on Formal Ontology in Information Systems, vol. 2001, pp. 270–284. ACM (2001)
Velardi, P., Navigli, R., Cuchiarelli, A., Neri, R.: Evaluation of OntoLearn, a methodology for automatic learning of domain ontologies. Ontol. Learn. Text Methods Eval. Appl. 123(92), 92–107 (2005)
Wille, R.: Lattices in Data Analysis: How to Draw Them with a Computer. Springer, Heidelberg (1989)
Xu, B., de Fréin, R., Robson, E., Foghlú, M.Ó.: Distributed formal concept analysis algorithms based on an iterative MapReduce framework. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS (LNAI), vol. 7278, pp. 292–308. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29892-9_26
Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W., et al.: New algorithms for fast discovery of association rules. KDD 97, 283–286 (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Jabbari, S., Stoffel, K. (2018). FCA-Based Ontology Learning from Unstructured Textual Data. In: Groza, A., Prasath, R. (eds) Mining Intelligence and Knowledge Exploration. MIKE 2018. Lecture Notes in Computer Science(), vol 11308. Springer, Cham. https://doi.org/10.1007/978-3-030-05918-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-05918-7_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05917-0
Online ISBN: 978-3-030-05918-7
eBook Packages: Computer ScienceComputer Science (R0)