Skip to main content

FCA-Based Ontology Learning from Unstructured Textual Data

  • Conference paper
  • First Online:
Mining Intelligence and Knowledge Exploration (MIKE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11308))

Abstract

Ontologies have been frequently used for representing domain knowledge. They have lots of applications in semantic knowledge extraction. However, learning ontologies especially from unstructured data is a difficult yet an interesting challenge. In this paper, we introduce a pipeline for learning ontology from a text corpus in a semi-automated fashion using Natural Language Processing (NLP) and Formal Concept Analysis (FCA). We apply our proposed method on a small given corpus that consists of some news documents in IT and pharmaceutical domain. We then discuss the potential applications of the proposed model and ideas on how to improve it even further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen, J.F.: Natural language processing. In: Encyclopedia of Cognitive Science (2006)

    Google Scholar 

  2. Bendaoud, R., Hacene, A.M.R., Toussaint, Y., Delecroix, B., Napoli, A.: Text-based ontology construction using relational concept analysis. In: International Workshop on Ontology Dynamics-IWOD 2007 (2007)

    Google Scholar 

  3. Bordat, J.P.: Calcul pratique du treillis de galois d’une correspondance. Mathématiques et Sciences humaines 96, 31–47 (1986)

    MathSciNet  MATH  Google Scholar 

  4. Carpineto, C., Romano, G.: GALOIS: an order-theoretic approach to conceptual clustering. In: Proceedings of ICML, vol. 293, pp. 33–40 (1993)

    Chapter  Google Scholar 

  5. Castellanos, A., Cigarrán, J., García-Serrano, A.: Formal concept analysis for topic detection: a clustering quality experimental analysis. Inf. Syst. 66, 24–42 (2017)

    Article  Google Scholar 

  6. Chowdhury, G.G.: Natural language processing. Ann. Rev. Inf. Sci. Technol. 37(1), 51–89 (2003)

    Article  MathSciNet  Google Scholar 

  7. Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora using formal concept analysis. J. Artif. Intell. Res. (JAIR) 24, 305–339 (2005)

    Article  Google Scholar 

  8. Dou, D., Wang, H., Liu, H.: Semantic data mining: a survey of ontology-based approaches. In: 2015 IEEE International Conference on Semantic Computing (ICSC), pp. 244–251. IEEE (2015)

    Google Scholar 

  9. Ganter, B.: Two Basic Algorithms in Concept Analysis. Springer, Heidelberg (2010)

    Book  Google Scholar 

  10. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, New York (2012)

    MATH  Google Scholar 

  11. Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering: with Examples from the Areas of Knowledge Management, e-Commerce and the Semantic Web. Springer, London (2006)

    Google Scholar 

  12. Krajca, P., Vychodil, V.: Distributed algorithm for computing formal concepts using map-reduce framework. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 333–344. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03915-7_29

    Chapter  MATH  Google Scholar 

  13. Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intell. Syst. 16(2), 72–79 (2001)

    Article  Google Scholar 

  14. Moraes, S., de Lima, V.L.S.: Combining formal concept analysis and semantic information for building ontological structures from texts: an exploratory study. In: LREC, pp. 3653–3660 (2012)

    Google Scholar 

  15. Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Inf. Process. Lett. 71(5), 199–204 (1999)

    Article  MathSciNet  Google Scholar 

  16. Velardi, P., Fabriani, P., Missikoff, M.: Using text processing techniques to automatically enrich a domain ontology. In: Proceedings of the international conference on Formal Ontology in Information Systems, vol. 2001, pp. 270–284. ACM (2001)

    Google Scholar 

  17. Velardi, P., Navigli, R., Cuchiarelli, A., Neri, R.: Evaluation of OntoLearn, a methodology for automatic learning of domain ontologies. Ontol. Learn. Text Methods Eval. Appl. 123(92), 92–107 (2005)

    Google Scholar 

  18. Wille, R.: Lattices in Data Analysis: How to Draw Them with a Computer. Springer, Heidelberg (1989)

    MATH  Google Scholar 

  19. Xu, B., de Fréin, R., Robson, E., Foghlú, M.Ó.: Distributed formal concept analysis algorithms based on an iterative MapReduce framework. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS (LNAI), vol. 7278, pp. 292–308. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29892-9_26

    Chapter  MATH  Google Scholar 

  20. Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W., et al.: New algorithms for fast discovery of association rules. KDD 97, 283–286 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simin Jabbari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jabbari, S., Stoffel, K. (2018). FCA-Based Ontology Learning from Unstructured Textual Data. In: Groza, A., Prasath, R. (eds) Mining Intelligence and Knowledge Exploration. MIKE 2018. Lecture Notes in Computer Science(), vol 11308. Springer, Cham. https://doi.org/10.1007/978-3-030-05918-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05918-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05917-0

  • Online ISBN: 978-3-030-05918-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics