Skip to main content

Scheduling Simultaneous Resources: A Case Study on a Calibration Laboratory

  • Conference paper
  • First Online:
Hybrid Metaheuristics (HM 2019)

Abstract

A calibration laboratory studied in this research performs a thermal test that requires an analyst for setup and processing and an oven to perform such an essay. For convenience, it’s possible to group some of the essays according to the oven capacity. In this scenario, this paper proposes a scheduling approach to minimize the total flowtime of the orders. This is a multiple resource scheduling problem, where a resource (operator) is used on two processes (oven setup and analysis). In contrast to the classical definition of multiple resource scheduling problems, the oven setup process requires the presence of the operator only for the startup of the process. To solve this problem, we derived: (i) a mixed-integer formulation; (ii) an Ant Colony Optimization (ACO) approach. On those developments, we also discuss some structural properties of this problem, that may lead to further advances in this field in the future. Our results show the ACO approach as a good alternative to the MIP, especially when solving instances with 30 service orders.

This research was supported by CAPES, CNPq (407104/2016-0) and FAPESP (2010/10133-0).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For convenience, the dummy node \(i=0\) is not represented here.

References

  1. Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M.Y.: A survey of scheduling problems with setup times or costs. Eur. J. Oper. Res. 187(3), 985–1032 (2008). https://doi.org/10.1016/j.ejor.2006.06.060. http://www.sciencedirect.com/science/article/pii/S0377221706008174

    Article  MathSciNet  MATH  Google Scholar 

  2. Behnamian, J., Ghomi, S.F., Jolai, F., Amirtaheri, O.: Realistic two-stage flowshop batch scheduling problems with transportation capacity and times. Appl. Math. Model. 36(2), 723–735 (2012). https://doi.org/10.1016/j.apm.2011.07.011. http://www.sciencedirect.com/science/article/pii/S0307904X1100391X

    Article  MathSciNet  MATH  Google Scholar 

  3. Belaid, R., Tkindt, V., Esswein, C.: Scheduling batches in flowshop with limited buffers in the shampoo industry. Eur. J. Oper. Res. 223(2), 560–572 (2012). https://doi.org/10.1016/j.ejor.2012.06.035. http://www.sciencedirect.com/science/article/pii/S0377221712004900

    Article  MathSciNet  MATH  Google Scholar 

  4. Blum, C.: Beam-ACO-hybridizing ant colony optimization with beam search: an application to open shop scheduling. Comput. Oper. Res. 32(6), 1565–1591 (2005)

    Article  Google Scholar 

  5. Braekers, K., Ramaekers, K., Nieuwenhuyse, I.V.: The vehicle routing problem: state of the art classification and review. Comput. Ind. Eng. 99, 300–313 (2016). https://doi.org/10.1016/j.cie.2015.12.007. http://www.sciencedirect.com/science/article/pii/S0360835215004775

    Article  Google Scholar 

  6. Cordeau, J.F., Laporte, G., Savelsbergh, M.W., Vigo, D.: Vehicle routing. In: Barnhart, C., Laporte, G. (eds.) Handbooks in Operations Research and Management Science: Transportation, vol. 14, pp. 367–428. Elsevier, Amsterdam (2007). https://doi.org/10.1016/S0927-0507(06)14006-2. http://www.sciencedirect.com/science/article/pii/S0927050706140062

    Chapter  Google Scholar 

  7. Dastidar, S.G., Nagi, R.: Scheduling injection molding operations with multiple resource constraints and sequence dependent setup times and costs. Comput. Oper. Res. 32(11), 2987–3005 (2005). https://doi.org/10.1016/j.cor.2004.04.012. http://www.sciencedirect.com/science/article/pii/S0305054804000899

    Article  MATH  Google Scholar 

  8. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony or cooperating agents. IEEE Trans. Syst. Man Cybern.-Part B 26, 29–41 (1996)

    Article  Google Scholar 

  9. Dorigo, M., StĂ¼tzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    Book  Google Scholar 

  10. Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theor. Comput. Sci. 344(2–3), 243–278 (2005). https://doi.org/10.1016/j.tcs.2005.05.020

    Article  MathSciNet  MATH  Google Scholar 

  11. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1, 53–66 (1997)

    Article  Google Scholar 

  12. Ham, A.: Scheduling of dual resource constrained lithography production: using CP and MIP/CP. IEEE Trans. Semicond. Manuf. 31(1), 52–61 (2018). https://doi.org/10.1109/TSM.2017.2768899

    Article  Google Scholar 

  13. Li, J., Huang, Y., Niu, X.: A branch population genetic algorithm for dual-resource constrained job shop scheduling problem. Comput. Ind. Eng. 102, 113–131 (2016). https://doi.org/10.1016/j.cie.2016.10.012. http://www.sciencedirect.com/science/article/pii/S0360835216303813

    Article  Google Scholar 

  14. Liao, C.J., Liao, L.M.: Improved MILP models for two-machine flowshop with batch processing machines. Math. Comput. Model. 48(7), 1254–1264 (2008). https://doi.org/10.1016/j.mcm.2008.01.001. http://www.sciencedirect.com/science/article/pii/S089571770800040X

    Article  MathSciNet  MATH  Google Scholar 

  15. Lpez-Ibez, M., Dubois-Lacoste, J., Cceres, L.P., Birattari, M., Sttzle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)

    Article  MathSciNet  Google Scholar 

  16. Merkle, D., Middendorf, M., Schmeck, H.: Ant colony optimization for resource-constrained project scheduling. IEEE Trans. Evol. Comput. 6(4), 333–346 (2002). https://doi.org/10.1109/TEVC.2002.802450

    Article  MATH  Google Scholar 

  17. Rajendran, C., Ziegler, H.: Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs. Eur. J. Oper. Res. 155(2), 426–438 (2004). http://ideas.repec.org/a/eee/ejores/v155y2004i2p426-438.html

    Article  Google Scholar 

  18. Smith, W.E.: Various optimizers for single state production. Naval Res. Logist. Q. 3, 59–66 (1956)

    Article  Google Scholar 

  19. Tang, L., Liu, P.: Minimizing makespan in a two-machine flowshop scheduling with batching and release time. Math. Comput. Model. 49(5), 1071–1077 (2009). https://doi.org/10.1016/j.mcm.2008.09.012. http://www.sciencedirect.com/science/article/pii/S0895717708003476

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, W., Ma, C., Bao, Z., Ren, X.: A multi-objective model of integrated collaborative planning and scheduling for dual-resource and its algorithm. In: 2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), vol. 1, pp. 400–403, August 2016. https://doi.org/10.1109/IHMSC.2016.154

  21. Xu, J., Xu, X., Xie, S.: Recent developments in dual resource constrained (DRC) system research. Eur. J. Oper. Res. 215(2), 309–318 (2011). https://doi.org/10.1016/j.ejor.2011.03.004. http://www.sciencedirect.com/science/article/pii/S0377221711002153

    Article  Google Scholar 

  22. Zaerpour, F., Bischak, D.P., Menezes, M.B.: Coordinated lab-clinics: a tactical assignment problem in healthcare. Eur. J. Oper. Res. 263(1), 283–294 (2017). https://doi.org/10.1016/j.ejor.2017.05.012. http://www.sciencedirect.com/science/article/pii/S037722171730440X

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, Y., Liu, S., Sun, S.: Clustering and genetic algorithm based hybrid flowshop scheduling with multiple operations. Math. Prob. Eng. 2014, 8 p. (2014). Article ID 167073. https://doi.org/10.1155/2014/167073

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roberto Tavares Neto or Fabio Molina da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tavares Neto, R., Molina da Silva, F. (2019). Scheduling Simultaneous Resources: A Case Study on a Calibration Laboratory. In: Blesa Aguilera, M., Blum, C., Gambini Santos, H., Pinacho-Davidson, P., Godoy del Campo, J. (eds) Hybrid Metaheuristics. HM 2019. Lecture Notes in Computer Science(), vol 11299. Springer, Cham. https://doi.org/10.1007/978-3-030-05983-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05983-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05982-8

  • Online ISBN: 978-3-030-05983-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics