Skip to main content

Construction and Visualization of Dynamic Biological Networks: Benchmarking the Neo4J Graph Database

  • Conference paper
  • First Online:
Data Integration in the Life Sciences (DILS 2018)

Abstract

Genome analysis is a major precondition for future advances in the life sciences. The complex organization of genome data and the interactions between genomic components can often be modeled and visualized in graph structures. In this paper we propose the integration of several data sets into a graph database. We study the aptness of the database system in terms of analysis and visualization of a genome regulatory network (GRN) by running a benchmark on it. Major advantages of using a database system are the modifiability of the data set, the immediate visualization of query results as well as built-in indexing and caching features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albers, D., Dewey, C., Gleicher, M.: Sequence surveyor: leveraging overview for scalable genomic alignment visualization. IEEE Trans. Vis. Comput. Graph. 17(12), 2392–2401 (2011)

    Article  Google Scholar 

  2. van Arensbergen, J., van Steensel, B., Bussemaker, H.J.: In search of the determinants of enhancer-promoter interaction specificity. Trends Cell Biol. 24(11), 695–702 (2014). http://www.sciencedirect.com/science/article/pii/S0962892414001184

    Article  Google Scholar 

  3. Baker, C.A., Carpendale, M.S.T., Prusinkiewicz, P., Surette, M.G.: GeneVis: visualization tools for genetic regulatory network dynamics. In: Visualization, VIS 2002. IEEE. pp. 243–250 (2002)

    Google Scholar 

  4. Bozdag, S., Li, A., Wuchty, S., Fine, H.A.: FastMEDUSA: a parallelized tool to infer gene regulatory networks. Bioinformatics 26(14), 1792–1793 (2010)

    Article  Google Scholar 

  5. Van den Bulcke, T., et al.: SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms. BMC Bioinform. 7(1), 43 (2006). https://doi.org/10.1186/1471-2105-7-43

    Article  Google Scholar 

  6. Chatraryamontri, A., et al.: The BioGRID interaction database: 2015 update. Nucleic Acids Res. (2014). http://nar.oxfordjournals.org/content/early/2014/11/26/nar.gku1204.abstract

  7. Fiannaca, A., La Rosa, M., La Paglia, L., Messina, A., Urso, A.: BioGraphDB: a new graphDB collecting heterogeneous data for bioinformatics analysis. In: Proceedings of BIOTECHNO (2016)

    Google Scholar 

  8. Gomez, J., et al.: BioJS: an open source Javascript framework for biological data visualization. Bioinformatics 29(8), 1103–1104 (2013). https://doi.org/10.1093/bioinformatics/btt100

    Article  Google Scholar 

  9. Have, C.T., Jensen, L.J.: Are graph databases ready for bioinformatics? Bioinformatics 29(24), 3107 (2013)

    Article  Google Scholar 

  10. Jupiter, D., Chen, H., VanBuren, V.: STARNET2: a web-based tool for accelerating discovery of gene regulatory networks using microarray co-expression data. BMC Bioinform. 10(1), 332 (2009)

    Article  Google Scholar 

  11. Karolchik, D., et al.: The UCSC table browser data retrieval tool. Nucleic Acids Res. 32(suppl–1), D493–D496 (2004). https://doi.org/10.1093/nar/gkh103

    Article  Google Scholar 

  12. Kel-Margoulis, O., Kel, A., Reuter, I., Deineko, I., Wingender, E.: TRANSCompel: a database on composite regulatory elements in eukaryotic genes. Nucleic Acids Res. 30, 332–334 (2002)

    Article  Google Scholar 

  13. Kerren, A., Kucher, K., Li, Y.F., Schreiber, F.: Biovis explorer: a visual guide for biological data visualization techniques. PLOS ONE 12(11), 1–14 (2017). https://doi.org/10.1371/journal.pone.0187341

    Article  Google Scholar 

  14. Kharumnuid, G., Roy, S.: Tools for in-silico reconstruction and visualization of gene regulatory networks (GRN). In: 2015 Second International Conference on Advances in Computing and Communication Engineering (ICACCE), pp. 421–426. IEEE (2015)

    Google Scholar 

  15. Kirlew, P.W.: Life science data repositories in the publications of scientists and librarians. Issues Sci. Technol. Libr. 65 (2011)

    Google Scholar 

  16. Krupp, M., Marquardt, J.U., Sahin, U., Galle, P.R., Castle, J., Teufel, A.: RNA-Seq Atlas - a reference database for gene expression profiling in normal tissue by next-generation sequencing. Bioinformatics 28(8), 1184–1185 (2012). https://doi.org/10.1093/bioinformatics/bts084

    Article  Google Scholar 

  17. Lizio, M., et al.: Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol. 16(1), 22 (2015). https://doi.org/10.1186/s13059-014-0560-6

    Article  Google Scholar 

  18. Longabaugh, W.J., Davidson, E.H., Bolouri, H.: Visualization, documentation, analysis, and communication of large-scale gene regulatory networks. Biochim. Biophys. Acta (BBA) - Gene Regul. Mech. 1789(4), 363–374 (2009). http://www.sciencedirect.com/science/article/pii/S1874939908001624

    Article  Google Scholar 

  19. Margolin, A.A., et al.: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform. 7(1), S7 (2006)

    Article  MathSciNet  Google Scholar 

  20. Matharu, N., Ahituv, N.: Minor loops in major folds: enhancer-promoter looping, chromatin restructuring, and their association with transcriptional regulation and disease. PLOS Genet. 11(12), 1–14 (2015). https://doi.org/10.1371/journal.pgen.1005640

    Article  Google Scholar 

  21. Meckbach, C., Tacke, R., Hua, X., Waack, S., Wingender, E., Gültas, M.: PC-TraFF: identification of potentially collaborating transcription factors using pointwise mutual information. BMC Bioinform. 16(1), 400 (2015). https://doi.org/10.1186/s12859-015-0827-2

    Article  Google Scholar 

  22. Mora, A., Sandve, G.K., Gabrielsen, O.S., Eskeland, R.: In the loop: promoter-enhancer interactions and bioinformatics. Brief. Bioinform. 17(6), 980–995 (2016). https://doi.org/10.1093/bib/bbv097

    Article  Google Scholar 

  23. O’Donoghue, S.I., et al.: Visualizing biological data - now and in the future. Nature Methods 7(3), S2 (2010)

    Article  MathSciNet  Google Scholar 

  24. Petryszak, R., et al.: Expression Atlas update - an integrated database of gene and protein expression in humans, animals and plants. Nucleic Acids Res. 44(D1), D746–D752 (2015)

    Article  Google Scholar 

  25. Ren, J., Lu, J., Wang, L., Chen, D.: Data visualization in bioinformatics. Adv. Inf. Sci. Serv. Sci. 4(22) (2012)

    Google Scholar 

  26. Roy, S., Bhattacharyya, D.K., Kalita, J.K.: Reconstruction of gene co-expression network from microarray data using local expression patterns. BMC Bioinform. 15(7), S10 (2014)

    Article  Google Scholar 

  27. Schaffter, T., Marbach, D., Floreano, D.: Genenetweaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27(16), 2263–2270 (2011)

    Article  Google Scholar 

  28. Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.L., Ideker, T.: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3), 431–432 (2010)

    Article  Google Scholar 

  29. Sonawane, A.R., et al.: Understanding tissue-specific gene regulation. Cell Rep. 21(4), 1077–1088 (2017)

    Article  Google Scholar 

  30. Steuernagel, L., Wiese, L., Gültas, M.: Repository visualization of dynamic biological networks. https://github.com/azifiDils/Visualization-of-DynamicBiological-Networks-

  31. Tripathi, S., Dehmer, M., Emmert-Streib, F.: NetBioV: an R package for visualizing large network data in biology and medicine. Bioinformatics 30(19), 2834–2836 (2014)

    Article  Google Scholar 

  32. Wang, M., et al.: LegumeGRN: a gene regulatory network prediction server for functional and comparative studies. PloS One 8(7), e67434 (2013)

    Article  Google Scholar 

  33. Whitfield, T.W., et al.: Functional analysis of transcription factor binding sites in human promoters. Genome Biol. 13(9), R50 (2012). https://doi.org/10.1186/gb-2012-13-9-r50

    Article  Google Scholar 

  34. Wiese, L.: Advanced Data Management for SQL, NoSQL. Cloud and Distributed Databases, DeGruyter/Oldenbourg (2015)

    Google Scholar 

  35. Wiese, L., Schmitt, A.O., Gültas, M.: Big data technologies for DNA sequencing. In: Sakr, S., Zomaya, A. (eds.) Encyclopedia of Big Data Technologies. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63962-8

    Chapter  Google Scholar 

Download references

Acknowledgements

Chimi Wangmo participated in the preparation of this article while visiting the University of Göttingen with a Go International Plus scholarship by the Erasmus+ Key Action of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena Wiese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wiese, L., Wangmo, C., Steuernagel, L., Schmitt, A.O., Gültas, M. (2019). Construction and Visualization of Dynamic Biological Networks: Benchmarking the Neo4J Graph Database. In: Auer, S., Vidal, ME. (eds) Data Integration in the Life Sciences. DILS 2018. Lecture Notes in Computer Science(), vol 11371. Springer, Cham. https://doi.org/10.1007/978-3-030-06016-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06016-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06015-2

  • Online ISBN: 978-3-030-06016-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics