Skip to main content

Marketing Meets Data Science: Bridging the Gap

  • Chapter
  • First Online:
Business and Consumer Analytics: New Ideas

Abstract

It is certain that computer science is completely reformulating the way that business is being conducted around the world. We are witnessing the increasing availability of large volumes of data together with the advances in artificial intelligence, machine learning and optimization techniques. Breakthroughs in statistics, discrete applied mathematics and new algorithms are leading to the development of a new interdisciplinary field: data science. The purpose of this chapter is to provide a bridge, a short-cut to understand some of the questions that computer science deals with in a context of developing new techniques to get knowledge from data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.youtube.com/watch?v=qtboCGd_hTA.

  2. 2.

    https://www.turing.ac.uk/.

  3. 3.

    http://www.chilton-computing.org.uk/inf/transputers/p011.htm.

  4. 4.

    http://energy.gov/articles/new-titan-supercomputer-named-fastest-world.

  5. 5.

    https://ec.europa.eu/commission/priorities/digital-single-market_en.

  6. 6.

    https://www.gov.uk/government/publications/the-age-of-algorithms.

  7. 7.

    http://www.businessnewsdaily.com/5450-internet-of-things-business-opportunities.html.

  8. 8.

    https://en.wikipedia.org/wiki/Big_data.

  9. 9.

    http://www.ibmbigdatahub.com/infographic/four-vs-big-data.

  10. 10.

    Proof That Computers Can’t Do Everything, (The Halting Problem) available in YouTube at: https://www.youtube.com/watch?v=92WHN-pAFCs.

  11. 11.

    http://bactra.org/notebooks/complexity-measures.html.

  12. 12.

    Problems for which the answer can only be either “Yes” or “No” are called decision problems.

  13. 13.

    Millennium Prize: P vs. NP http://theconversation.com/millennium-prize-p-vs-np-4246.

  14. 14.

    En passant, an area of computer science that is concerned with visualization algorithms, creates aesthetically and perceptually informative layouts of data structures such as graphs. Chapter 16 presents one approach and several references can help the reader to have an introduction to the topic.

  15. 15.

    http://geneticprogramming.com/software/.

  16. 16.

    http://www.nutonian.com.

  17. 17.

    https://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai/.

  18. 18.

    http://archive.boston.com/news/nation/articles/2009/02/18/chapter_4_sailing_into_the_wind/.

  19. 19.

    http://www.nbcnews.com/id/5612836/ns/politics/t/mccain-deplores-anti-kerry-ad/.

  20. 20.

    http://www.businessinsider.com.au/john-kerry-donald-trump-john-mccain-2015-7.

  21. 21.

    http://michaelmoore.com/trumpwillwin/

  22. 22.

    http://analytics-magazine.org/13-keys-to-the-white-house/.

  23. 23.

    http://www.newyorker.com/magazine/1958/12/06/rival-2.

  24. 24.

    https://en.wikipedia.org/wiki/Quadric.

  25. 25.

    http://quoteinvestigator.com/2015/07/23/great-power/.

  26. 26.

    http://www.scholarpedia.org/article/Neocognitron.

  27. 27.

    http://fortune.com/ai-artificial-intelligence-deep-machine-learning/.

  28. 28.

    http://bactra.org/notebooks/complexity-measures.html.

  29. 29.

    http://www.csie.ntu.edu.tw/~htlin/paper/doc/wskdd10cup.pdf.

  30. 30.

    http://www.csie.ntu.edu.tw/~cjlin/courses/dmcase2010/slide.pdf.

  31. 31.

    http://calteches.library.caltech.edu/3043/1/CargoCult.pdf.

  32. 32.

    https://work.caltech.edu/lecture.html.

  33. 33.

    https://www.britannica.com/topic/Occams-razor.

  34. 34.

    https://en.wikiquote.org/wiki/William_of_Ockham.

  35. 35.

    http://www.scholarpedia.org/article/Sampling_bias.

  36. 36.

    https://en.wikipedia.org/wiki/Simpson's_paradox.

  37. 37.

    https://en.wikipedia.org/wiki/Waist-to-height_ratio.

  38. 38.

    http://www.npr.org/templates/story/story.php?storyId=106268439.

  39. 39.

    https://en.wikipedia.org/wiki/Support_vector_machine.

  40. 40.

    http://neuralnetworksanddeeplearning.com.

References

  1. Third International Conference on Document Analysis and Recognition, ICDAR 1995, August 14–15, 1995, Montreal, Canada. Volume I. IEEE Computer Society, 1995.

    Google Scholar 

  2. Shigeo Abe. Support Vector Machines for Pattern Classification. Advances in Pattern Recognition. Springer, 2010.

    Book  MATH  Google Scholar 

  3. Yaser S. Abu-Mostafa. Learning from hints in neural networks. J. Complexity, 6(2):192–198, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  4. Yaser S. Abu-Mostafa. A method for learning from hints. In Stephen Jose Hanson, Jack D. Cowan, and C. Lee Giles, editors, Advances in Neural Information Processing Systems 5, [NIPS Conference, Denver, Colorado, USA, November 30 - December 3, 1992], pages 73–80. Morgan Kaufmann, 1992.

    Google Scholar 

  5. Yaser S. Abu-Mostafa. Hints and the VC dimension. Neural Computation, 5(2):278–288, 1993.

    Article  MathSciNet  Google Scholar 

  6. Yaser S. Abu-Mostafa. Learning from hints. J. Complexity, 10(1):165–178, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  7. Yaser S. Abu-Mostafa. Hints. Neural Computation, 7(4):639–671, 1995.

    Article  Google Scholar 

  8. Yaser S. Abu-Mostafa. Financial model calibration using consistency hints. IEEE Trans. Neural Networks, 12(4):791–808, 2001.

    Article  Google Scholar 

  9. Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning From Data. AMLBook, 2012.

    Google Scholar 

  10. Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining association rules between sets of items in large databases. In Peter Buneman and Sushil Jajodia, editors, Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, D.C., May 26–28, 1993, pages 207–216. ACM Press, 1993.

    Google Scholar 

  11. Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows - theory, algorithms and applications. Prentice Hall, 1993.

    Google Scholar 

  12. Mahmood Alborzi and Mohammad Khanbabaei. Using data mining and neural networks techniques to propose a new hybrid customer behaviour analysis and credit scoring model in banking services based on a developed RFM analysis method. IJBIS, 23(1):1–22, 2016.

    Article  Google Scholar 

  13. Pedro Albuquerque, Solange Alfinito, and Claudio V. Torres. Support vector clustering for customer segmentation on mobile tv service. Communications in Statistics - Simulation and Computation, 44(6):1453–1464, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  14. Fawaz Alsolami, Talha Amin, Mikhail Moshkov, and Beata Zielosko. Comparison of heuristics for optimization of association rules. In Zbigniew Suraj and Ludwik Czaja, editors, Proceedings of the 24th International Workshop on Concurrency, Specification and Programming, Rzeszow, Poland, September 28–30, 2015, volume 1492 of CEUR Workshop Proceedings, pages 4–11. CEUR-WS.org, 2015.

    Google Scholar 

  15. Edoardo Amaldi, Stefano Coniglio, and Leonardo Taccari. Discrete optimization methods to fit piecewise affine models to data points. Computers & OR, 75:214–230, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  16. Edoardo Amaldi and Viggo Kann. The complexity and approximability of finding maximum feasible subsystems of linear relations. Theor. Comput. Sci., 147(1&2):181–210, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  17. Edoardo Amaldi and Marco Mattavelli. The MIN PFS problem and piecewise linear model estimation. Discrete Applied Mathematics, 118(1-2):115–143, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  18. Tom Anderson. Pittsburgh area mall sells for $100 at a foreclosure auction. http://goo.gl/CQptpN, January 2017. (Accessed on 12/13/2017).

  19. Ahmed Shamsul Arefin, Luke Mathieson, Daniel Johnstone, Regina Berretta, and Pablo Moscato. Unveiling clusters of RNA transcript pairs associated with markers of Alzheimer’s disease progression. PLOS ONE, 7(9):1–25, 09 2012.

    Article  Google Scholar 

  20. Marcelo G. Armentano, Jie Tang, and Virginia Yannibelli, editors. Proceedings of the 3rd International Workshop on Social Influence Analysis co-located with 26th International Joint Conference on Artificial Intelligence (IJCAI) 2017, Melbourne, Australia, August 19, 2017, volume 1893 of CEUR Workshop Proceedings. CEUR-WS.org, 2017.

    Google Scholar 

  21. Bart Baesens, Stijn Viaene, Dirk Van den Poel, Jan Vanthienen, and Guido Dedene. Bayesian neural network learning for repeat purchase modelling in direct marketing. European Journal of Operational Research, 138(1):191–211, 2002.

    Article  MATH  Google Scholar 

  22. Roberto Battiti. Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Networks, 5(4):537–550, 1994.

    Article  Google Scholar 

  23. Roberto Battiti and Mauro Brunato. The LION way. Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, 2014.

    Google Scholar 

  24. Kristin P. Bennett and Erin J. Bredensteiner. Duality and geometry in SVM classifiers. In Pat Langley, editor, Proceedings of the Seventeenth International Conference on Machine Learning (ICML 2000), Stanford University, Stanford, CA, USA, June 29 - July 2, 2000, pages 57–64. Morgan Kaufmann, 2000.

    Google Scholar 

  25. Avrim Blum and Ronald L. Rivest. Training a 3-node neural network is NP-complete. Neural Networks, 5(1):117–127, 1992.

    Article  Google Scholar 

  26. Avrim Blum and Ronald L. Rivest. Training a 3-node neural network is NP-complete. In Stephen Jose Hanson, Werner Remmele, and Ronald L. Rivest, editors, Machine Learning: From Theory to Applications - Cooperative Research at Siemens and MIT, volume 661 of Lecture Notes in Computer Science, pages 9–28. Springer, 1993.

    Google Scholar 

  27. Remco R. Bouckaert, Eibe Frank, Mark A. Hall, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Witten. WEKA - experiences with a java open-source project. Journal of Machine Learning Research, 11:2533–2541, 2010.

    MATH  Google Scholar 

  28. T. Bowell and G. Kemp. Critical Thinking: A Concise Guide. Taylor & Francis, 2014.

    Book  Google Scholar 

  29. Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

    Article  MATH  Google Scholar 

  30. Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine. Computer Networks, 30(1–7):107–117, 1998.

    Google Scholar 

  31. Christopher J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov., 2(2):121–167, 1998.

    Google Scholar 

  32. Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge University Press, 2006.

    Book  MATH  Google Scholar 

  33. Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM TIST, 2(3):27:1–27:27, 2011.

    Google Scholar 

  34. Kuan-Yu Chen and Cheng-Hua Wang. Support vector regression with genetic algorithms in forecasting tourism demand. Tourism Management, 28(1):215–226, 2007.

    Article  MathSciNet  Google Scholar 

  35. Yiling Chen and Isaac G. Councill. An introduction to support vector machines: A review. AI Magazine, 24(2):105–107, 2003.

    Google Scholar 

  36. Kwok-Wai Cheung, James T. Kwok, Martin H. Law, and Kwok-Ching Tsui. Mining customer product ratings for personalized marketing. Decision Support Systems, 35(2):231–243, 2003. Web Data Mining.

    Article  Google Scholar 

  37. Pradeep Chintagunta, Dominique M. Hanssens, and John R. Hauser. Editorial - marketing science and big data. Marketing Science, 35(3):341–342, 2016.

    Article  Google Scholar 

  38. Darren M. Chitty. Improving the performance of GPU-based genetic programming through exploitation of on-chip memory. Soft Comput., 20(2):661–680, 2016.

    Article  Google Scholar 

  39. Andrzej Cichocki. Tensor networks for big data analytics and large-scale optimization problems. CoRR, abs/1407.3124, 2014.

    Google Scholar 

  40. Brendan Cody-Kenny, Edgar Galván López, and Stephen Barrett. locoGP: Improving performance by genetic programming java source code. In Sara Silva and Anna Isabel Esparcia-Alcázar, editors, Genetic and Evolutionary Computation Conference, GECCO 2015, Madrid, Spain, July 11–15, 2015, Companion Material Proceedings, pages 811–818. ACM, 2015.

    Google Scholar 

  41. I.M. Copi, C. Cohen, and K. McMahon. Introduction to Logic. Pearson, 2013.

    Google Scholar 

  42. Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. Modeling wine preferences by data mining from physicochemical properties. Decision Support Systems, 47(4):547–553, 2009. Smart Business Networks: Concepts and Empirical Evidence.

    Google Scholar 

  43. Carlos Cotta, Antonio José Fernández Leiva, and José E. Gallardo. Memetic algorithms and complete techniques. In Neri et al. [166], pages 189–200.

    Google Scholar 

  44. Kristof Coussement and Dirk Van den Poel. Churn prediction in subscription services: An application of support vector machines while comparing two parameter-selection techniques. Expert Systems with Applications, 34(1):313–327, 2008.

    Article  Google Scholar 

  45. Nichael Lynn Cramer. A representation for the adaptive generation of simple sequential programs. In John J. Grefenstette, editor, Proceedings of the 1st International Conference on Genetic Algorithms, Pittsburgh, PA, USA, July 1985, pages 183–187. Lawrence Erlbaum Associates, 1985.

    Google Scholar 

  46. Nello Cristianini and Bernhard Schölkopf. Support vector machines and kernel methods: The new generation of learning machines. AI Magazine, 23(3):31–42, 2002.

    Google Scholar 

  47. Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, 2010.

    MATH  Google Scholar 

  48. Dapeng Cui and David Curry. Prediction in marketing using the support vector machine. Marketing Science, 24(4):595–615, 2005.

    Article  Google Scholar 

  49. N. Da Costa Lewis. Deep Learning for Business with R: A Very Gentle Introduction to Business Analytics Using Deep Neural Networks. CreateSpace Independent Publishing Platform, 2016.

    Google Scholar 

  50. S. Davies and S. Russell. NP-completeness of searches for smallest possible feature sets. In Proceedings of the AAAI Symposium on Relevance, pages 41–43, 1994.

    Google Scholar 

  51. Natalie Jane de Vries, Ahmed Shamsul Arefin, and Pablo Moscato. Gauging heterogeneity in online consumer behaviour data: A proximity graph approach. In 2014 IEEE Fourth International Conference on Big Data and Cloud Computing, BDCloud 2014, Sydney, Australia, December 3–5, 2014, pages 485–492. IEEE Computer Society, 2014.

    Google Scholar 

  52. K. DeCell and A.J. Lichtman. The Thirteen Keys to the Presidency. Madison Books, 1990.

    Google Scholar 

  53. Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos. Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs. ACM Transactions on Algorithms, 1(1):33–47, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  54. Kristen Bell DeTienne and David H. DeTienne. Neural networks in strategic marketing: exploring the possibilities. Journal of Strategic Marketing, 25(4):289–300, 2017.

    Google Scholar 

  55. Daniella Diaz. Donald trump looms behind Hillary Clinton at the debate - CNN Politics. https://goo.gl/6dduaN, October 2016. (Accessed on 12/13/2017).

  56. Chris H. Q. Ding and Hanchuan Peng. Minimum redundancy feature selection from microarray gene expression data. J. Bioinformatics and Computational Biology, 3(2):185–206, 2005.

    Google Scholar 

  57. Marta Disegna, Isabella Procidano, and Silio R. Luchini. Segmenting the Italian tourists: A neural network approach. Faculty of Tourism and Hospitality Management in Opatija.Biennial International Congress. Tourism and Hospitality Industry, pages 60–73, 2010. Copyright - Copyright University of Rijeka, Faculty of Tourism and Hospitality Management 2010; Last updated - 2012-07-05; SubjectsTermNotLitGenreText - Italy.

    Google Scholar 

  58. Rodney G. Downey, Michael R. Fellows, and Ulrike Stege. Computational tractability: The view from mars. Bulletin of the EATCS, 69:73–97, 1999.

    MathSciNet  MATH  Google Scholar 

  59. Harris Drucker, Christopher J. C. Burges, Linda Kaufman, Alexander J. Smola, and Vladimir Vapnik. Support vector regression machines. In Advances in Neural Information Processing Systems 9, NIPS, Denver, CO, USA, December 2–5, 1996, pages 155–161, 1996.

    Google Scholar 

  60. Maureen K. Ohlhausen Terrell McSweeny Edith Ramirez, Julie Brill. Big data: A tool for inclusion or exclusion?: Understanding the issues. https://goo.gl/WQqnaQ. (Accessed on 12/13/2017).

  61. Andrzej Ehrenfeucht, David Haussler, Michael J. Kearns, and Leslie G. Valiant. A general lower bound on the number of examples needed for learning. Inf. Comput., 82(3):247–261, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  62. David A. Elizondo. The linear separability problem: some testing methods. IEEE Trans. Neural Networks, 17(2):330–344, 2006.

    Article  Google Scholar 

  63. Guo en XIA and Wei dong JIN. Model of customer churn prediction on support vector machine. Systems Engineering - Theory & Practice, 28(1):71–77, 2008.

    Article  Google Scholar 

  64. S. Ervelles, N. Fukawa, and L. Swayne. Big data consumer analytics and the transformation of marketing. Journal of Business Research, 69(2):897–904, 2016.

    Article  Google Scholar 

  65. Thomas A. Feo and Mauricio G. C. Resende. Greedy randomized adaptive search procedures. J. Global Optimization, 6(2):109–133, 1995.

    Google Scholar 

  66. Thomas A. Feo, Mauricio G. C. Resende, and Stuart H. Smith. A greedy randomized adaptive search procedure for maximum independent set. Operations Research, 42(5):860–878, 1994.

    Article  MATH  Google Scholar 

  67. Resende M, Ribeiro C (2016) Optimization by GRASP. Springer-Verlag New York.

    Chapter  MATH  Google Scholar 

  68. Robyn Ffrancon and Marc Schoenauer. Memetic semantic genetic programming. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2015, Madrid, Spain, July 11–15, 2015, pages 1023–1030, 2015.

    Google Scholar 

  69. Richard Forsyth. BEAGLE A Darwinian approach to pattern recognition. Kybernetes, 10(3):159–166, 1981.

    Article  Google Scholar 

  70. Les R. Foulds. Combinatorial Optimization for Undergraduates. Springer-Verlag New York, 1984.

    Google Scholar 

  71. Aviezri S. Fraenkel and David Lichtenstein. Computing a perfect strategy for n x n chess requires time exponential in n. J. Comb. Theory, Ser. A, 31(2):199–214, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  72. Kunihiko Fukushima. Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural Networks, 1(2):119–130, 1988.

    Article  Google Scholar 

  73. Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4):193–202, April 1980.

    Article  MATH  Google Scholar 

  74. Kunihiko Fukushima, Sei Miyake, and Takayuki Ito. Neocognitron: A neural network model for a mechanism of visual pattern recognition. IEEE Trans. Systems, Man, and Cybernetics, 13(5):826–834, 1983.

    Article  Google Scholar 

  75. Rawan Ghnemat and Edward Jaser. Classification of mobile customers behavior and usage patterns using self-organizing neural networks. iJIM, 9(4):4–11, 2015.

    Google Scholar 

  76. Malcom Gladwell. Blink: The Power of Thinking without Thinking. Bay Back Books, Little, Brown, 2005.

    Google Scholar 

  77. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston, MA, 1997.

    Book  MATH  Google Scholar 

  78. Gabriel Gómez-Pérez, José David Martín-Guerrero, Emilio Soria-Olivas, Emili Balaguer-Ballester, Alberto Palomares, and Nicolás Casariego. Assigning discounts in a marketing campaign by using reinforcement learning and neural networks. Expert Syst. Appl., 36(4):8022–8031, 2009.

    Google Scholar 

  79. Martin Gomez Ravetti and Pablo Moscato. Identification of a 5-protein biomarker molecular signature for predicting Alzheimer’s disease. PLOS ONE, 3(9):1–12, 09 2008.

    Google Scholar 

  80. Maoguo Gong, Chao Song, Chao Duan, Lijia Ma, and Bo Shen. An efficient memetic algorithm for influence maximization in social networks. IEEE Comp. Int. Mag., 11(3):22–33, 2016.

    Article  Google Scholar 

  81. Dhrubajyoti Goswami, Ajit Singh, and Bruno R. Preiss. From design patterns to parallel architectural skeletons. J. Parallel Distrib. Comput., 62(4):669–695, 2002.

    Article  MATH  Google Scholar 

  82. J. L Gross and J Yellen. Handbook of Graph Theory. Discrete Mathematics and its Applications. CRC Press LLC, Boca Raton, Florida, 2004.

    Google Scholar 

  83. Gianluigi Guido, M. Irene Prete, Stefano Miraglia, and Irma De Mare. Targeting direct marketing campaigns by neural networks. Journal of Marketing Management, 27(9–10):992–1006, 2011.

    Article  Google Scholar 

  84. Christoph Haase and Stefan Kiefer. The odds of staying on budget. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6–10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer Science, pages 234–246. Springer, 2015.

    Google Scholar 

  85. Petr Hájek, Ivan Havel, and Metodej K. Chytil. The GUHA method of automatic hypotheses determination. Computing, 1(4):293–308, 1966.

    Article  MATH  Google Scholar 

  86. Petr Hájek, Martin Holena, and Jan Rauch. The GUHA method and its meaning for data mining. J. Comput. Syst. Sci., 76(1):34–48, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  87. Adriana Hansberg, Dirk Meierling, and Lutz Volkmann. Distance domination and distance irredundance in graphs. Electr. J. Comb., 14(1), 2007.

    Google Scholar 

  88. P. Hansen and N. Mladenović. Variable neighborhood search: Principles and applications. European Journal of Operational Research, 130(3):449–467, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  89. J. B. Heaton, N. G. Polson, and J. H. Witte. Deep learning for finance: deep portfolios. Applied Stochastic Models in Business and Industry, 33(1):3–12, 2017. asmb.2209.

    Article  MathSciNet  MATH  Google Scholar 

  90. Jeff Heaton. Comparing dataset characteristics that favor the apriori, Eclat or FP-growth frequent itemset mining algorithms. CoRR, abs/1701.09042, 2017.

    Google Scholar 

  91. Tin Kam Ho. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell., 20(8):832–844, 1998.

    Google Scholar 

  92. Steven C. H. Hoi, Jialei Wang, and Peilin Zhao. LIBOL: a library for online learning algorithms. Journal of Machine Learning Research, 15(1):495–499, 2014.

    Google Scholar 

  93. Harald Hruschka. Determining market response functions by neural network modeling: A comparison to econometric techniques. European Journal of Operational Research, 66(1):27–35, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  94. Zhongyi Hu, Yukun Bao, and Tao Xiong. Comprehensive learning particle swarm optimization based memetic algorithm for model selection in short-term load forecasting using support vector regression. Appl. Soft Comput., 25:15–25, 2014.

    Article  Google Scholar 

  95. Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary decision trees is NP-complete. Inf. Process. Lett., 5(1):15–17, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  96. Adnan Idris, Muhammad Rizwan, and Asifullah Khan. Churn prediction in telecom using random forest and PSO based data balancing in combination with various feature selection strategies. Computers and Electrical Engineering, 38(6):1808–1819, 2012.

    Article  Google Scholar 

  97. Alexander G. Ororbia II, David Reitter, Jian Wu, and C. Lee Giles. Online learning of deep hybrid architectures for semi-supervised categorization. In Annalisa Appice, Pedro Pereira Rodrigues, Vítor Santos Costa, Carlos Soares, João Gama, and Alípio Jorge, editors, Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2015, Porto, Portugal, September 7–11, 2015, Proceedings, Part I, volume 9284 of Lecture Notes in Computer Science, pages 516–532. Springer, 2015.

    Google Scholar 

  98. James J. Jiang, Maosen Zhong, and Gary Klein. Marketing category forecasting: An alternative of BVAR-artificial neural networks. Decision Sciences, 31(4):789–812, 2000.

    Article  Google Scholar 

  99. R. Johnsonbaugh. Discrete Mathematics. Pearson Education, 2017.

    Google Scholar 

  100. R. Johnsonbaugh and M. Schaefer. Algorithms. JK computer science and mathematics series. Pearson Education, 2004.

    Google Scholar 

  101. Daniel Johnstone, Elizabeth A. Milward, Regina Berretta, Pablo Moscato, and for the Alzheimer’s Disease Neuroimaging Initiative. Multivariate protein signatures of pre-clinical Alzheimer’s disease in the Alzheimer’s disease neuroimaging initiative (ADNI) plasma proteome dataset. PLOS ONE, 7(4):1–17, 04 2012.

    Google Scholar 

  102. J. Stephen Judd. Learning in neural networks. In David Haussler and Leonard Pitt, editors, Proceedings of the First Annual Workshop on Computational Learning Theory, COLT ’88, Cambridge, MA, USA, August 3–5, 1988., pages 2–8. ACM/MIT, 1988.

    Google Scholar 

  103. J. Stephen Judd. On the complexity of loading shallow neural networks. J. Complexity, 4(3):177–192, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  104. J. Stephen Judd. Neural network design and the complexity of learning. Neural network modeling and connectionism. MIT Press, 1990.

    Book  Google Scholar 

  105. J. Stephen Judd. Constant-time loading of shallow 1-dimensional networks. In John E. Moody, Stephen Jose Hanson, and Richard Lippmann, editors, Advances in Neural Information Processing Systems 4, [NIPS Conference, Denver, Colorado, USA, December 2–5, 1991], pages 863–870. Morgan Kaufmann, 1991.

    Google Scholar 

  106. Giuseppe Jurman, Samantha Riccadonna, and Cesare Furlanello. A comparison of MCC and CEN error measures in multi-class prediction. PLOS ONE, 7(8):1–8, 08 2012.

    Google Scholar 

  107. Mir Md Jahangir Kabir, Shuxiang Xu, Byeong Ho Kang, and Zongyuan Zhao. A new multiple seeds based genetic algorithm for discovering a set of interesting Boolean association rules. Expert Syst. Appl., 74:55–69, 2017.

    Article  Google Scholar 

  108. Frederick Kaefer, Carrie M. Heilman, and Samuel D. Ramenofsky. A neural network application to consumer classification to improve the timing of direct marketing activities. Computers & Operations Research, 32(10):2595–2615, 2005. Applications of Neural Networks.

    Article  MATH  Google Scholar 

  109. James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating data science endeavors. In 2015 IEEE International Conference on Data Science and Advanced Analytics, DSAA 2015, Campus des Cordeliers, Paris, France, October 19–21, 2015, pages 1–10. IEEE, 2015.

    Google Scholar 

  110. S. Kase and N. Nishiyama. An Industrial Engineering Game Model for Factory Layout. The Journal of Industrial Engineering, XV(3):148–150, 1964.

    Google Scholar 

  111. J.D. Kelleher, B.M. Namee, and A. D’Arcy. Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. MIT Press, 2015.

    MATH  Google Scholar 

  112. Athakorn Kengpol and Worrapon Wangananon. The expert system for assessing customer satisfaction on fragrance notes: Using artificial neural networks. Computers & Industrial Engineering, 51(4):567–584, 2006.

    Article  Google Scholar 

  113. Dongil Kim, Hyoung joo Lee, and Sungzoon Cho. Response modeling with support vector regression. Expert Systems with Applications, 34(2):1102–1108, 2008.

    Article  Google Scholar 

  114. Jaesoo Kim, Sherrie Wei, and Hein Ruys. Segmenting the market of west Australian senior tourists using an artificial neural network. Tourism Management, 24(1):25–34, 2003.

    Article  Google Scholar 

  115. Jun Woo Kim. Construction and evaluation of structured association map for visual exploration of association rules. Expert Syst. Appl., 74:70–81, 2017.

    Google Scholar 

  116. S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi. Optimization by simulated annealing. Science, 220(4598):671–680, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  117. Norbert Klasner and Hans Ulrich Simon. From noise-free to noise-tolerant and from on-line to batch learning. In Wolfgang Maass, editor, Proceedings of the Eight Annual Conference on Computational Learning Theory, COLT 1995, Santa Cruz, California, USA, July 5–8, 1995, pages 250–257. ACM, 1995.

    Google Scholar 

  118. Arthur K. Kordon. Applying Genetic Programming in Business Forecasting, pages 101–117. Springer New York, New York, NY, 2014.

    Google Scholar 

  119. Michael F. Korns. Trading Volatility Using Highly Accurate Symbolic Regression, pages 531–547. Springer International Publishing, Cham, 2015.

    Google Scholar 

  120. Mandy Korpusik, Shigeyuki Sakaki, Francine Chen, and Yan-Ying Chen. Recurrent neural networks for customer purchase prediction on twitter. In Toine Bogers, Marijn Koolen, Cataldo Musto, Pasquale Lops, and Giovanni Semeraro, editors, Proceedings of the 3rd Workshop on New Trends in Content-Based Recommender Systems co-located with ACM Conference on Recommender Systems (RecSys 2016), Boston, MA, USA, September 16, 2016., volume 1673 of CEUR Workshop Proceedings, pages 47–50. CEUR-WS.org, 2016.

    Google Scholar 

  121. S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas. Machine learning: A review of classification and combining techniques. Artif. Intell. Rev., 26(3):159–190, November 2006.

    Article  Google Scholar 

  122. John R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

    MATH  Google Scholar 

  123. John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge Massachusetts, May 1994.

    MATH  Google Scholar 

  124. John R. Koza. Human-competitive results produced by genetic programming. Genetic Programming and Evolvable Machines, 11(3/4):251–284, September 2010. Tenth Anniversary Issue: Progress in Genetic Programming and Evolvable Machines.

    Google Scholar 

  125. John R. Koza, David Andre, Forrest H Bennett III, and Martin Keane. Genetic Programming III: Darwinian Invention and Problem Solving. Morgan Kaufman, April 1999.

    Google Scholar 

  126. Nicolas Lachiche. Propositionalization. In Claude Gammut and Geoffrey I. Webb, editors, Encyclopedia of Machine Learning, pages 812–817. Boston, MA, 2010.

    Google Scholar 

  127. Giuseppe Lancia, Luke Mathieson, and Pablo Moscato. Separating sets of strings by finding matching patterns is almost always hard. Theor. Comput. Sci., 665:73–86, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  128. William B. Langdon and Mark Harman. Optimizing existing software with genetic programming. IEEE Trans. Evolutionary Computation, 19(1):118–135, 2015.

    Article  Google Scholar 

  129. William B. Langdon, Brian Yee Hong Lam, Marc Modat, Justyna Petke, and Mark Harman. Genetic improvement of GPU software. Genetic Programming and Evolvable Machines, 18(1):5–44, 2017.

    Article  Google Scholar 

  130. William B. Langdon, Brian Yee Hong Lam, Justyna Petke, and Mark Harman. Improving CUDA DNA analysis software with genetic programming. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2015, Madrid, Spain, July 11–15, 2015, pages 1063–1070, 2015.

    Google Scholar 

  131. William B. Langdon, Marc Modat, Justyna Petke, and Mark Harman. Improving 3d medical image registration CUDA software with genetic programming. In Dirk V. Arnold, editor, Genetic and Evolutionary Computation Conference, GECCO ’14, Vancouver, BC, Canada, July 12–16, 2014, pages 951–958. ACM, 2014.

    Google Scholar 

  132. Rob Law and Norman Au. A neural network model to forecast Japanese demand for travel to Hong Kong. Tourism Management, 20(1):89–97, 1999.

    Article  Google Scholar 

  133. Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

    Article  Google Scholar 

  134. Tian-Shyug Lee and I-Fei Chen. Mining the customer credit using artificial neural networks and multivariate adaptive regression splines. In Hamid R. Arabnia, editor, Proceedings of the International Conference on Artificial Intelligence, IC-AI ’04, June 21–24, 2004, Las Vegas, Nevada, USA, Volume 1, pages 133–139. CSREA Press, 2004.

    Google Scholar 

  135. Wan-I Lee and Bih-Yaw Shih. Application of neural networks to recognize profitable customers for dental services marketing-a case of dental clinics in Taiwan. Expert Syst. Appl., 36(1):199–208, 2009.

    Article  Google Scholar 

  136. A.A. Levis and L.G. Papageorgiou. Customer demand forecasting via support vector regression analysis. Chemical Engineering Research and Design, 83(8):1009–1018, 2005.

    Article  Google Scholar 

  137. Theodore Levitt. Marketing myopia. Harvard Business Review, pages 45–56, 1960.

    Google Scholar 

  138. Chun-Liang Li, Yu-Chuan Su, Ting-Wei Lin, Cheng-Hao Tsai, Wei-Cheng Chang, Kuan-Hao Huang, Tzu-Ming Kuo, Shan-Wei Lin, Young-San Lin, Yu-Chen Lu, Chun-Pai Yang, Cheng-Xia Chang, Wei-Sheng Chin, Yu-Chin Juan, Hsiao-Yu Tung, Jui-Pin Wang, Cheng-Kuang Wei, Felix Wu, Tu-Chun Yin, Tong Yu, Yong Zhuang, Shou-De Lin, Hsuan-Tien Lin, and Chih-Jen Lin. Combination of feature engineering and ranking models for paper-author identification in KDD cup 2013. Journal of Machine Learning Research, 16:2921–2947, 2015.

    Google Scholar 

  139. Xun Liang, Rong-Chang Chen, Yang Bo He, and Ying Chen. Associating stock prices with web financial information time series based on support vector regression. Neurocomputing, 115:142–149, 2013.

    Article  Google Scholar 

  140. A.J. Lichtman and V.I. Keilis-Borok. Pattern recognition applied to presidential elections in the united state 1860–1980: role of integral, social, economic and political traits. Proceedings of the National Academy of Sciences USA, 78:7230–7234, 1981.

    Article  MathSciNet  Google Scholar 

  141. Allan J. Lichtman. Why president Obama must endorse Hillary Clinton. https://goo.gl/exJh3e, May 2016. (Accessed on 12/13/2017).

  142. Allan J. Lichtman and Ken DeCell. The Thirteen Keys to the Presidency. Madison Books, 1990.

    Google Scholar 

  143. Nathan Linial, Yishay Mansour, and Ronald L. Rivest. Results on learnability and the Vapnik-Chervonenkis dimension. Inf. Comput., 90(1):33–49, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  144. Paulo J. G. Lisboa. Interpretability in machine learning - principles and practice. In Francesco Masulli, Gabriella Pasi, and Ronald R. Yager, editors, Fuzzy Logic and Applications - 10th International Workshop, WILF 2013, Genoa, Italy, November 19–22, 2013. Proceedings, volume 8256 of Lecture Notes in Computer Science, pages 15–21. Springer, 2013.

    Google Scholar 

  145. Nick Littlestone. From on-line to batch learning. In Ronald L. Rivest, David Haussler, and Manfred K. Warmuth, editors, Proceedings of the Second Annual Workshop on Computational Learning Theory, COLT 1989, Santa Cruz, CA, USA, July 31–August 2, 1989., pages 269–284. Morgan Kaufmann, 1989.

    Google Scholar 

  146. Chi-Jie Lu. Sales forecasting of computer products based on variable selection scheme and support vector regression. Neurocomputing, 128:491–499, 2014.

    Article  Google Scholar 

  147. Alessandro Prudêncio Lukosevicius, Gustavo Guimarães Marchisotti, and Carlos Alberto Pereira Soares. Overview of complexity: main currents, definitions and constructs. Sistemas & Gestão, 11(4):455–465, 2017.

    Article  Google Scholar 

  148. J. M. Luna, A. Cano, and S. Ventura. Genetic Programming for Mining Association Rules in Relational Database Environments, pages 431–450. Springer International Publishing, Cham, 2015.

    Google Scholar 

  149. Emad Mabrouk, Abdel-Rahman Hedar, and Masao Fukushima. Memetic programming with adaptive local search using tree data structures. In Richard Chbeir, Youakim Badr, Ajith Abraham, Dominique Laurent, Mario Köppen, Fernando Ferri, Lotfi A. Zadeh, and Yukio Ohsawa, editors, CSTST 2008: Proceedings of the 5th International Conference on Soft Computing as Transdisciplinary Science and Technology, Cergy-Pontoise, France, October 28–31, 2008, pages 258–264. ACM, 2008.

    Google Scholar 

  150. Emad Mabrouk, Julio César Hernández-Castro, and Masao Fukushima. Prime number generation using memetic programming. Artificial Life and Robotics, 16(1):53–56, Jun 2011.

    Article  Google Scholar 

  151. Malik Magdon-Ismail, Hung-Ching Chen, and Yaser S. Abu-Mostafa. The multilevel classification problem and a monotonicity hint. In Hujun Yin, Nigel M. Allinson, Richard T. Freeman, John A. Keane, and Simon J. Hubbard, editors, Intelligent Data Engineering and Automated Learning - IDEAL 2002, Third International Conference, Manchester, UK, August 12–14, Proceedings, volume 2412 of Lecture Notes in Computer Science, pages 410–415. Springer, 2002.

    Google Scholar 

  152. Helen M. Marcus-Roberts and Fred S. Roberts. Meaningless statistics. Journal of Educational Statistics, 12(4):383–394, 1987.

    Article  Google Scholar 

  153. D. Martín, Jesús Alcalá-Fdez, Alejandro Rosete, and F. Herrera. NICGAR: A niching genetic algorithm to mine a diverse set of interesting quantitative association rules. Inf. Sci., 355–356:208–228, 2016.

    Google Scholar 

  154. Marco Mattavelli and Edoardo Amaldi. Estimating piecewise linear models using combinatorial optimization techniques. In 8th European Signal Processing Conference, EUSIPCO 1996, Trieste, Italy, 10–13 September, 1996, pages 1–4. IEEE, 1996.

    Google Scholar 

  155. Josef A. Mazanec. Classifying tourists into market segments. Journal of Travel & Tourism Marketing, 1(1):39–60, 1992.

    Article  Google Scholar 

  156. Nimrod Megiddo. On the complexity of polyhedral separability. Discrete & Computational Geometry, 3:325–337, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  157. Joel Michell. The psychometricians’ fallacy: Too clever by half? British Journal of Mathematical and Statistical Psychology, 62(1):41–55, 2009.

    Article  MathSciNet  Google Scholar 

  158. Marvin Minsky and Seymour Papert. Perceptrons - an introduction to computational geometry. MIT Press, 1987.

    MATH  Google Scholar 

  159. Sérgio Moro, Paulo Cortez, and Paulo Rita. Using customer lifetime value and neural networks to improve the prediction of bank deposit subscription in telemarketing campaigns. Neural Computing and Applications, 26(1):131–139, 2015.

    Article  Google Scholar 

  160. Pablo Moscato. Memetic algorithms: The untold story. In Handbook of Memetic Algorithms, pages 275–309. Springer Berlin Heidelberg, 2012.

    Google Scholar 

  161. Pablo Moscato, Luke Mathieson, Alexandre Mendes, and Regina Berretta. The electronic primaries: Predicting the U.S. presidency using feature selection with safe data reduction. In Vladimir Estivill-Castro, editor, Computer Science 2005, Twenty-Eighth Australasian Computer Science Conference (ACSC2005), Newcastle, NSW, Australia, January/February 2005, volume 38 of CRPIT, pages 371–380. Australian Computer Society, 2005.

    Google Scholar 

  162. Pablo Moscato and Michael G. Norman. A “memetic” approach for the travelling salesman problem: Implementation of a computational ecology for combinatorial optimization on message-passing systems. In M. Valero, E. Onate, M. Jane, J. L. Larriba, and B. Suarez, editors, Proceedings of PACTA ’92 - International Conference on Parallel Computing and Transputer Applications, Sep. 21–25, Barcelona, pages 177–186. IOS Press, Amsterdam, 1992.

    Google Scholar 

  163. M. N. Murty and Rashmi Raghava. Support Vector Machines and Perceptrons - Learning, Optimization, Classification, and Application to Social Networks. Springer Briefs in Computer Science. Springer, 2016.

    Google Scholar 

  164. Tomofumi Nakano and Shohei Kato. Validation of 3d convolutional neural networks for customer satisfaction estimation using videos. In Leonard Barolli, Tomoya Enokido, and Makoto Takizawa, editors, Advances in Network-Based Information Systems, The 20th International Conference on Network-Based Information Systems, NBiS 2017, Ryerson University, Toronto, ON, Canada, August 24–26, 2017., volume 7 of Lecture Notes on Data Engineering and Communications Technologies, pages 453–462. Springer, 2017.

    Google Scholar 

  165. Mohammad B. Naseri and Greg Elliott. Targeting online customers. A comparative analysis of artificial neural networks and logistic regression. Journal of Decision Systems, 19(3):291–312, 2010.

    Article  Google Scholar 

  166. Ferrante Neri, Carlos Cotta, and Pablo Moscato, editors. Handbook of Memetic Algorithms, volume 379 of Studies in Computational Intelligence. Springer, 2012.

    Google Scholar 

  167. Fabrice Talla Nobibon. Algorithms for selection and graph-coloring problems with applications in marketing and micro-economics. PhD thesis, Faculteit Economie En Bedrijfswetenschappen, KU Leuven, Katholieke Universiteit Leuven, 9 2010.

    Google Scholar 

  168. Mikel Olazaran. A sociological study of the official history of the perceptrons controversy. Social Studies of Science, 26(3):611–659, 1996.

    Article  Google Scholar 

  169. Andrea Ovans. That Mad Men Computer, Explained by HBR in 1969. https://hbr.org/2014/05/that-mad-men-computer-explained-by-hbr-in-1969, May 2014. (Accessed on 4/24/2018).

  170. Herbert Pang, Stephen L. George, Ken Hui, and Tiejun Tong. Gene selection using iterative feature elimination random forests for survival outcomes. IEEE/ACM Trans. Comput. Biology Bioinform., 9(5):1422–1431, 2012.

    Article  Google Scholar 

  171. Sungjune Park. Neural networks and customer grouping in e-commerce: A framework using fuzzy ART. In 2000 Academia/Industry Working Conference on Research Challenges (AIWORC 2000), Next Generation Enterprises: Virtual Organizations and Mobile/Pervasive Technologies, 27–29 April 2000, Buffalo, NY, USA, pages 331–336. IEEE Computer Society, 2000.

    Google Scholar 

  172. Hanchuan Peng, Fuhui Long, and Chris H. Q. Ding. Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell., 27(8):1226–1238, 2005.

    Google Scholar 

  173. M. Pirlot. General local search methods. European Journal of Operational Research, 92(3):493–511, 1996.

    Article  MATH  Google Scholar 

  174. Karl Popper. The logic of scientific discovery. Routledge, London/New York, 2005.

    Book  MATH  Google Scholar 

  175. Doina Precup and Yee Whye Teh, editors. Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6–11 August 2017, volume 70 of Proceedings of Machine Learning Research. PMLR, 2017.

    Google Scholar 

  176. Bruno R. Preiss. Design patterns for the data structures and algorithms course. In Jane Prey and Robert E. Noonan, editors, Proceedings of the 30th SIGCSE Technical Symposium on Computer Science Education, 1999, New Orleans, Louisiana, USA, March 14–28, 1999, pages 95–99. ACM, 1999.

    Google Scholar 

  177. Bruno R. Preiss. Data Structures and Algorithms with Object-Oriented Design Patterns in Java. Worldwide Series in Computer Science. Wiley, 2000.

    Google Scholar 

  178. P. Roushini Leely Pushpam and S. Padmapriea. Global roman domination in graphs. Discrete Applied Mathematics, 200:176–185, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  179. Resende MGC, Ribeiro CC (2003) Greedy Randomized Adaptive Search. In: Glover F, Kochenberger G (ed) Handbook of Metaheuristics. Springer US, Boston, MA, pp 219–249

    Google Scholar 

  180. Ibrahim Zafar Qureshi, Marwan Khammash, and Konstantinos Nikolopoulos. Turning artificial neural networks into a marketing science tool - modelling and forecasting the impact of sales promotions. In Joaquim Filipe and Ana L. N. Fred, editors, ICAART 2011 - Proceedings of the 3rd International Conference on Agents and Artificial Intelligence, Volume 1 - Artificial Intelligence, Rome, Italy, January 28–30, 2011, pages 698–702. SciTePress, 2011.

    Google Scholar 

  181. C.G Raptis, C.I Siettos, C.T Kiranoudis, and G.V Bafas. Classification of aged wine distillates using fuzzy and neural network systems. Journal of Food Engineering, 46(4):267–275, 2000.

    Article  Google Scholar 

  182. David M. Reif, Alison A. Motsinger, Brett A. McKinney, James E. Crowe Jr., and Jason H. Moore. Feature selection using a random forests classifier for the integrated analysis of multiple data types. In Proceedings of the 2006 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB 2006, Renaissance Hotel Downtown, Toronto, Ontario, Canada, September 28–29, 2006, pages 1–8. IEEE, 2006.

    Google Scholar 

  183. Mauricio G. C. Resende and Thomas A. Feo. A GRASP for satisfiability. In David S. Johnson and Michael A. Trick, editors, Cliques, Coloring, and Satisfiability, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, October 11–13, 1993, volume 26 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 499–520. DIMACS/AMS, 1993.

    Google Scholar 

  184. Fred S. Roberts. Meaningfulness of conclusions from combinatorial optimization. Discrete Applied Mathematics, 29(2-3):221–241, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  185. J. M. Robson. The complexity of go. In IFIP Congress, pages 413–417, 1983.

    Google Scholar 

  186. J. M. Robson. N by N checkers is exptime complete. SIAM J. Comput., 13(2):252–267, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  187. Mateus Rocha de Paula, Regina Berretta, and Pablo Moscato. A fast meta-heuristic approach for the alpha beta- k -feature set problem. Journal of Heuristics, 22(2):199–220, Apr 2016.

    Google Scholar 

  188. Mateus Rocha de Paula, Martín Gómez Ravetti, Regina Berretta, and Pablo Moscato. Differences in abundances of cell-signalling proteins in blood reveal novel biomarkers for early detection of clinical Alzheimer’s disease. PLOS ONE, 6(3):1–14, 03 2011.

    Google Scholar 

  189. Kenneth H. Rosen. Discrete Mathematics and Its Applications. McGraw-Hill Higher Education, 5th edition, 2002.

    Google Scholar 

  190. Frank Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 1958.

    Google Scholar 

  191. Giovanni B. Rossi and Francesco Crenna. On ratio scales. Measurement, 46(8):2913–2920, 2013.

    Article  Google Scholar 

  192. Rutger Ruizendaal. The potential of deep learning in marketing. Master’s thesis, University of Twente/StudyPortals, September 2017.

    Google Scholar 

  193. Mary-Ann Russon. Cia using deep learning neural networks to predict social unrest before it occurs. http://goo.gl/bT3pyH, October 2016. (Accessed on 12/13/2017).

  194. Nasser R. Sabar, Masri Ayob, Rong Qu, and Graham Kendall. A graph coloring constructive hyper-heuristic for examination timetabling problems. Appl. Intell., 37(1):1–11, 2012.

    Article  Google Scholar 

  195. Douglas A. Samuelson. Election 2012: The ‘13 keys’ to the white house - informs. https://goo.gl/ewiK3c. (Accessed on 12/13/2017).

  196. Sanjoy Sarkar, Tillman Weyde, Artur S. d’Avila Garcez, Gregory G. Slabaugh, Simo Dragicevic, and Chris Percy. Accuracy and interpretability trade-offs in machine learning applied to safer gambling. In Tarek Richard Besold, Antoine Bordes, Artur S. d’Avila Garcez, and Greg Wayne, editors, Proceedings of the Workshop on Cognitive Computation: Integrating neural and symbolic approaches 2016 co-located with the 30th Annual Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, December 9, 2016., volume 1773 of CEUR Workshop Proceedings. CEUR-WS.org, 2016.

    Google Scholar 

  197. Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85–117, 2015.

    Article  Google Scholar 

  198. Jürgen Schmidhuber. Deep learning. In Claude Sammut and Geoffrey I. Webb, editors, Encyclopedia of Machine Learning and Data Mining, pages 338–348. Springer, 2017.

    Google Scholar 

  199. Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. Science, 324(5923):81–85, 2009.

    Article  Google Scholar 

  200. Peter Schuster. Definitions of complexity are notoriously difficult. In Peter Schuster, editor, 43 Visions for Complexity, pages 61–62. World Scientific, 2016.

    Google Scholar 

  201. Dominic P. Searson. GPTIPS 2: An Open-Source Software Platform for Symbolic Data Mining, pages 551–573. Springer International Publishing, Cham, 2015.

    Google Scholar 

  202. A. Sharma and P. K. Panigrahi, Dr. A Neural Network based Approach for Predicting Customer Churn in Cellular Network Services. ArXiv e-prints, September 2013.

    Google Scholar 

  203. Klaas Sijtsma. Introduction to the measurement of psychological attributes. Measurement, 44(7):1209–1219, 2011.

    Article  Google Scholar 

  204. Joseph Sill and Yaser S. Abu-Mostafa. Monotonicity hints. In Advances in Neural Information Processing Systems 9, NIPS, Denver, CO, USA, December 2–5, 1996, pages 634–640, 1996.

    Google Scholar 

  205. D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis. Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm. ArXiv e-prints, December 2017.

    Google Scholar 

  206. David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

    Article  Google Scholar 

  207. David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the game of go without human knowledge. Nature, 550:354–359, 2017.

    Article  Google Scholar 

  208. Peter Sondergaard. The internet of things will give rise to the algorithm economy - Peter Sondergaard. http://goo.gl/fNFr6n, June 2015. (Accessed on 12/13/2017).

  209. Arua De M. Sousa, Ana Carolina Lorena, and Márcio P. Basgalupp. GEEK: grammatical evolution for automatically evolving kernel functions. In 2017 IEEE Trustcom/BigDataSE/ICESS, Sydney, Australia, August 1–4, 2017, pages 941–948. IEEE, 2017.

    Google Scholar 

  210. Ramakrishnan Srikant and Rakesh Agrawal. Mining quantitative association rules in large relational tables. In H. V. Jagadish and Inderpal Singh Mumick, editors, Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, Montreal, Quebec, Canada, June 4–6, 1996., pages 1–12. ACM Press, 1996.

    Google Scholar 

  211. Pål Roe Sundsøy, Johannes Bjelland, Asif M. Iqbal, Alex Pentland, and Yves-Alexandre de Montjoye. Big data-driven marketing: How machine learning outperforms marketers’ gut-feeling. In William G. Kennedy, Nitin Agarwal, and Shanchieh Jay Yang, editors, Social Computing, Behavioral-Cultural Modeling and Prediction - 7th International Conference, SBP 2014, Washington, DC, USA, April 1–4, 2014. Proceedings, volume 8393 of Lecture Notes in Computer Science, pages 367–374. Springer, 2014.

    Google Scholar 

  212. Matt Taibbi. “How America made Donald Trump unstoppable”. Rolling Stone, February 24, 2016.

    Google Scholar 

  213. Yu-An Tan, Zuo Wang, and Qi Luo. Research on customer classification in e-supermarket by using modified fuzzy neural networks. In Derong Liu, Shumin Fei, Zeng-Guang Hou, Huaguang Zhang, and Changyin Sun, editors, Advances in Neural Networks - ISNN 2007, 4th International Symposium on Neural Networks, ISNN 2007, Nanjing, China, June 3–7, 2007, Proceedings, Part II, volume 4492 of Lecture Notes in Computer Science, pages 301–306. Springer, 2007.

    Google Scholar 

  214. Zaiyong Tang. Improving direct marketing profitability with neural networks. International Journal of Computer Applications (0975–8887), 29(5):13–18, 09 2011.

    Google Scholar 

  215. R. Jeffrey Thieme, Michael Song, and Roger J. Calantone. Artificial neural network decision support systems for new product development project selection. Journal of Marketing Research, 37(4):499–507, 2000.

    Article  Google Scholar 

  216. The New York Times. New navy device learns by doing; psychologist shows embryo of computer designed to read and grow wiser. http://goo.gl/RcdkyF, July 1958. (Accessed on 12/13/2017).

  217. Craig A. Tovey. Tutorial on computational complexity. Interfaces, 32(3):30–61, 2002.

    Article  Google Scholar 

  218. E. Triantaphyllou. Data Mining and Knowledge Discovery via Logic-Based Methods: Theory, Algorithms, and Applications. Springer Optimization and Its Applications. Springer US, 2010.

    Google Scholar 

  219. Chih-Fong Tsai and Yu-Hsin Lu. Customer churn prediction by hybrid neural networks. Expert Syst. Appl., 36(10):12547–12553, 2009.

    Article  Google Scholar 

  220. Avraam Tsantekidis, Nikolaos Passalis, Anastasios Tefas, Juho Kanniainen, Moncef Gabbouj, and Alexandros Iosifidis. Using deep learning to detect price change indications in financial markets. In 25th European Signal Processing Conference, EUSIPCO 2017, Kos, Greece, August 28 - September 2, 2017, pages 2511–2515. IEEE, 2017.

    Google Scholar 

  221. A. M. Turing. Computing machinery and intelligence. Mind, 49:433–460, January 01 1950.

    Article  MathSciNet  Google Scholar 

  222. Jeffrey D. Ullman. NP-complete scheduling problems. J. Comput. Syst. Sci., 10(3):384–393, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  223. Ali Vahdat, Jillian Morgan, Andrew R. McIntyre, Malcolm I. Heywood, and Nur Zincir-Heywood. Evolving GP Classifiers for Streaming Data Tasks with Concept Change and Label Budgets: A Benchmarking Study, pages 451–480. Springer International Publishing, Cham, 2015.

    Book  Google Scholar 

  224. Kalyan Veeramachaneni, Katya Vladislavleva, Matt Burland, Jason Parcon, and Una-May O’Reilly. Evolutionary optimization of flavours. In Martin Pelikan and Jürgen Branke, editors, Genetic and Evolutionary Computation Conference, GECCO 2010, Proceedings, Portland, Oregon, USA, July 7–11, 2010, pages 1291–1298. ACM, 2010.

    Google Scholar 

  225. M.G.A. Verhoeven and E.H.L. Aarts. Parallel local search. Journal of Heuristics, 1:43–65, 1995.

    Article  MATH  Google Scholar 

  226. Bernd Vindevogel, Dirk van den Poel, and Geert Wets. Why promotion strategies based on market basket analysis do not work. Expert Systems with Applications, 28(3):583–590, 2005.

    Article  Google Scholar 

  227. Haohan Wang, Bhiksha Raj, and Eric P. Xing. On the origin of deep learning. CoRR, abs/1702.07800, 2017.

    Google Scholar 

  228. Yisen Wang and Shu-Tao Xia. A novel feature subspace selection method in random forests for high dimensional data. In 2016 International Joint Conference on Neural Networks, IJCNN 2016, Vancouver, BC, Canada, July 24–29, 2016, pages 4383–4389. IEEE, 2016.

    Google Scholar 

  229. Wikipedia. Heights of presidents and presidential candidates of the united states. https://goo.gl/R9sme6. (Accessed on 12/13/2017).

  230. L. Wittgenstein. Tractatus Logico-philosophicus. International library of psychology, philosophy, and scientific method. Routledge, 1990.

    Google Scholar 

  231. Barry Wray, Adrian Palmer, and David Bejou. Using neural network analysis to evaluate buyer-seller relationships. European Journal of Marketing, 28(10):32–48, 1994.

    Article  Google Scholar 

  232. Jingtao Yao, Nicholas Teng, Hean-Lee Poh, and Chew Lim Tan. Forecasting and analysis of marketing data using neural networks. J. Inf. Sci. Eng., 14(4):843–862, 1998.

    Google Scholar 

  233. Hsuan-Tien Lin, Yaser S. Abu Mostafa, Malik Magdon-Ismail. Learning from Data. AML Book, 2012.

    Google Scholar 

  234. Xiaobing Yu, Shunsheng Guo, Jun Guo, and Xiaorong Huang. An extended support vector machine forecasting framework for customer churn in e-commerce. Expert Systems with Applications, 38(3):1425–1430, 2011.

    Article  Google Scholar 

  235. Yiteng Zhai, Yew-Soon Ong, and Ivor W. Tsang. Making trillion correlations feasible in feature grouping and selection. IEEE Trans. Pattern Anal. Mach. Intell., 38(12):2472–2486, 2016.

    Article  Google Scholar 

  236. Hao Zhang, Zhiting Hu, Jinliang Wei, Pengtao Xie, Gunhee Kim, Qirong Ho, and Eric P. Xing. Poseidon: A system architecture for efficient GPU-based deep learning on multiple machines. CoRR, abs/1512.06216, 2015.

    Google Scholar 

  237. Yu Zhao, Bing Li, Xiu Li, Wenhuang Liu, and Shouju Ren. Customer churn prediction using improved one-class support vector machine. In Xue Li, Shuliang Wang, and Zhao Yang Dong, editors, Advanced Data Mining and Applications, First International Conference, ADMA 2005, Wuhan, China, July 22–24, 2005, Proceedings, volume 3584 of Lecture Notes in Computer Science, pages 300–306. Springer, 2005.

    Google Scholar 

  238. Beata Zielosko. Application of dynamic programming approach to optimization of association rules relative to coverage and length. Fundam. Inform., 148(1–2):87–105, 2016.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Luke Mathieson, Ivana Ljubic and Shannon Fenn for helpful comments on early drafts of this chapter. Pablo Moscato acknowledges previous support from the Australian Research Council Future Fellowship FT120100060 and Australian Research Council Discovery Projects DP120102576 and DP140104183. He acknowledges a fruitful discussion with Prof. Keilis-Borok in 1991 at the International Centre for Theoretical Physics, in Trieste, Italy, and also thanks the organizers of the Workshop on Non-Linear Dynamics and Earthquake Prediction that facilitated his participation by funding his visit and attendance to the event.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Moscato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moscato, P., de Vries, N.J. (2019). Marketing Meets Data Science: Bridging the Gap. In: Moscato, P., de Vries, N. (eds) Business and Consumer Analytics: New Ideas. Springer, Cham. https://doi.org/10.1007/978-3-030-06222-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06222-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06221-7

  • Online ISBN: 978-3-030-06222-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics