Abstract
The Team Orienteering Problem (TOP) is an expansion of the orienteering problem. The problem’s data is a set of nodes and each node is associated with a score value. The goal of the TOP is to construct a discrete number of routes in order to visit the nodes and collect their scores aiming to maximize the total collected score with respect to a total travel time constraint. In this paper we propose a Memetic algorithm with Similarity Operator (\(\operatorname {MSO-TOP}\)) for solving the TOP. The concept of the “similarity operator” is that feasible sub-routes of the solutions are serving as chromosomes. The efficacy of \(\operatorname {MSO-TOP}\) was tested using the known benchmark instances for the TOP. From the experiments it was concluded that “similarity operator” is a promising technique and \(\operatorname {MSO-TOP}\) produces quality solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Archetti, C., Hertz, A., & Speranza, M. G. (2007). Metaheuristics for the team orienteering problem. Journal of Heuristics, 13(1), 49–76.
Bonnefoy, L. (2010). L’optimisation par essaims particulaires appliquée au team orienteering problem. Preprint available at: http://ludovicbonnefoy.files.wordpress.com/2010/10/majecstic2010.pdf.
Bouly, H., Dang, D. C., & Moukrim, A. (2010). A memetic algorithm for the team orienteering problem. 4OR, 8(1), 49–70.
Butt, S. E., & Cavalier, T. M. (1994). A heuristic for the multiple tour maximum collection problem. Computers & Operations Research, 21(1), 101–111.
Chao, I. M., Golden, B. L., & Wasil, E. A. (1996). The team orienteering problem. European journal of operational research, 88(3), 464–474.
Chao, I. M., Golden, B. L., & Wasil, E. A. (1996). A fast and effective heuristic for the orienteering problem. European Journal of Operational Research, 88(3), 475–489.
Dang, D. C., Guibadj, R. N., & Moukrim, A. (2011). A PSO-based memetic algorithm for the team orienteering problem. Applications of Evolutionary Computation, Springer Berlin Heidelberg, 471–480.
Dang, D. C., Guibadj, R. N., & Moukrim, A. (2013). An effective PSO-inspired algorithm for the team orienteering problem. European Journal of Operational Research, 229(2), 332–344.
Desrosiers, J., & Lübbecke, M. E. (2005). A primer in column generation, Springer US, 1–32.
Golden, B. L., Levy, L., & Vohra, R. (1987). The orienteering problem. Naval research logistics, 34(3), 307–318.
Hart, W. E., Krasnogor, N., & Smith, J. E. (Eds.). (2004). Recent advances in memetic algorithms, Springer Science & Business Media, 166.
Ke, L., Archetti, C. & Feng, Z. (2008). Ants can solve the team orienteering problem. Computers & Industrial Engineering, 54(3), 648–665.
Kim, B. I., Li, H., & Johnson, A. L. (2013). An augmented large neighborhood search method for solving the team orienteering problem. Expert Systems with Applications, 40(8), 3065–3072.
Lin, S. W. (2013). Solving the team orienteering problem using effective multi-start simulated annealing. Applied Soft Computing, 13(2), 1064–1073.
Marinakis, Y., Politis, M., Marinaki, M., & Matsatsinis, N. (2015). A Memetic-GRASP Algorithm for the Solution of the Orienteering Problem. Modelling, Computation and Optimization in Information Systems and Management Sciences, Springer International Publishing, 105–116.
Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech concurrent computation program, C3P Report, 826, 1989.
Moscato, P., & Cotta, C. (2003). A gentle introduction to memetic algorithms. Handbook of metaheuristics, Springer US, 105–144.
Muthuswamy, S., & Lam, S. (2011). Discrete particle swarm optimization for the team orienteering problem. Memetic Computing, 3(4), 287–303.
Rosenkrantz, D. J., Stearns, R. E., & Lewis, II, P. M. (1977). An analysis of several heuristics for the traveling salesman problem. SIAM journal on computing, 6(3), 563–581.
Souffriau, W., Vansteenwegen, P., Berghe, G. V., & Van Oudheusden, D. (2010). A path relinking approach for the team orienteering problem.Computers & Operations Research, 37(11), 1853–1859.
Souffriau, W., Vansteenwegen, P., Vertommen, J., Berghe, G. V.,& Oudheusden, D. V. (2008). A personalized tourist trip design algorithm for mobile tourist guides. Applied Artificial Intelligence, 22(10), 964–985.
Tang, H., & Miller-Hooks, E. (2005). A tabu search heuristic for the team orienteering problem. Computers & Operations Research, 32(6), 1379–1407.
Toth, P., & Vigo, D. (Eds.). (2014). Vehicle routing: problems, methods, and applications (Vol. 18). Siam.
Vansteenwegen, P., Souffriau, W., & Van Oudheusden, D. (2011). The orienteering problem: A survey. European Journal of Operational Research, 209(1), 1–10.
Vansteenwegen, P., Souffriau, W., Berghe, G. V., & Van Oudheusden, D. (2009). A guided local search metaheuristic for the team orienteering problem. European Journal of Operational Research, 196(1), 118–127.
Vansteenwegen, P., Souffriau, W., Berghe, G. V., & Van Oudheusden, D. (2009). Metaheuristics for tourist trip planning. Metaheuristics in the Service Industry, Springer Berlin Heidelberg, 15–31.
Vansteenwegen, P., & Van Oudheusden, D. (2007). The mobile tourist guide: an OR opportunity. OR Insight, 20(3), 21–27.
Vincent, F. Y., Lin, S. W., & Chou, S. Y. (2010). The museum visitor routing problem. Applied Mathematics and Computation, 216(3), 719–729.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Trachanatzi, D., Tsakirakis, E., Marinaki, M., Marinakis, Y., Matsatsinis, N. (2019). A Memetic Algorithm for the Team Orienteering Problem. In: Moscato, P., de Vries, N. (eds) Business and Consumer Analytics: New Ideas. Springer, Cham. https://doi.org/10.1007/978-3-030-06222-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-06222-4_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-06221-7
Online ISBN: 978-3-030-06222-4
eBook Packages: Computer ScienceComputer Science (R0)