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Abstract— Parallel and distributed solutions are esserfitiniclustering data

streams due to the large volumes of data. This rpfyse examines a direct
adaptation of a recently developed prototype-basgatrithm into three existing

parallel frameworks. Based on the evaluation of gyerénce, the paper then
presents a customised pipeline framework that coesbincremental and two-
phase learning into a balanced approach that dyadignallocates the available
processing resources. This new framework is evadlan a collection of

synthetic datasets. The experimental results rataalthe framework not only
produces correct final clusters on the one hantlalso significantly improves

the clustering efficiency.
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1 I ntroduction

Recent advances in information and networking teldigies and their applications in
almost every sector of life have led to a rapidwdhoof the massive amount of data
known asBig Data[1]. One of the most important characteristics f #ata is its
velocity which means that data may arrive and requirega®ing at different speeds.
While for some applications, the arrival and preaeg of data can be performed in an
offline batch processing style, others require icmmus and real-time analysis of
collections of incoming data (known as data churff&]3][4]). Data stream cluster-
ing is defined as a grouping of data in light @&fcfuently arriving new data chunks for
understanding the underlying group patterns that change over time [5].

It is the sheer volume of data arriving at high aadable speeds of accumulation
that deems normal clustering algorithms inefficiantl incapable of dealing with the
demand [6]. Therefore, distributed and parallebeatgms are the ultimate solution
for analysing big data streams in reality, whiclevédent in the more recent research
work ([4][7][8]). Distributed and parallel solutisnoffer several benefits such as
reduction of the overall response time, improvedlaulity of solutions and



suitability for applications of distributed natwsech as sensor networks, social media,
Internet of Things (loT), etc. [9].

Multi-core processor commodity computers are widedgd nowadays. At a higher
but affordable price, a computer can have up t@at2 processors. As the computer
hardware technology advances, cheaper and more maeessors will become
available. The question then is how to utilise #vailable processing resources on
board of a local machine. In this paper, we ardw algorithms for data stream
clustering should be first implemented on a multiecparallel processing framework
by making the best use of the available procedsaaslocal machine before running
the algorithms in a distributed network of compsiter

This paper is therefore concerned with how to pelisé most recent techniques
for clustering data streams. In general, the pgpemotes a two-phase parallel
approach for incrementally clustering data strednRICDS) where processors will
incrementally maintain local clustering models iargdlel at the online phase, and
local cluster models can be merged into a glohater model at the offline phase. In
particular, the paper investigates the paralléisabf a recent algorithm EINCKM
[10] in the TPICDS framework because of the aldonis modular structure and
performance over other existing algorithms. The kvoonsists of two parts. In the
first part, the paper investigates how the EINCKMoathm adapts three typical
parallelisms in existence. Based on a performanealuation of the adapted
parallelisms inside the algorithm, the paper furtheposes a parallel pipeline with
optimised and dynamic allocations of processingpusses. Experimental results
show that the proposed solution not only produaasect final clusters, but also
significantly improves the efficiency.

The rest of this paper is organised as followstiSe@ explains the related work
on distributed and parallel data stream clustedigprithms in the literature, and
propose the TPICDS approach at the end. Sectioplaias the EINCKM algorithm
adaptation of the existing parallelisms. Sectigmesents the proposed optimised and
dynamic parallel pipelines. Section 5 concludeswtbek and outlines possible future
directions of this research.

2 Related Work

2.1 Computational Approaches

Two approaches for mining data streams are inengst incremental and two-phase
learning. With the incremental methods (e.g. STREAM]), a global model of clus-
ters is iteratively developed to reflect currentdifications made by incoming data
chunks. The two-phase approach (e.g. CluStrean flidHes the clustering process
into two phases, i.e. an online phase where treer@abrds are summarised into small
intermediatemicro-clusters and an offline phase where the micro-clusterspace
cessed into final clusters at a query point [13hid/the incremental algorithms al-
ways provide an accumulated view of global clustgrthe arrival point of an incom-
ing data chunk at the expense of continuous clastethe two-phase algorithms pro-



vide such a view of clusters at the point of therguvithout constantly finding final
clusters. Therefore, it can be argued that increéahedigorithms are more suited for
real-time response systems [4].

2.2  Data Stream Clustering Algorithm EINCKM

EINCKM is a prototype-based algorithm for clustgridata streams and identifying
outlier objects [10]. Taking the incremental leagiapproach, the algorithm divides
the clustering process into three sequential st@pid Clusters Merge andPrune.
Build Clustersuses the K-Means method to find the clusters énitiput data chunk.
Mergeintegrates the newly formed clusters with existimgs.Prune detects outliers
and checks the concept drift using a fading fumctidhe algorithm applies a
heuristic-based method to estimate the numberusteais, a radius-based technique to
merge overlapped clusters, and a variance-basetamisen to prune outliers. The
algorithm is modular and adaptable to further improents. However, the algorithm
is a sequential algorithm where the three key djmers must be performed in order.
Itis, therefore, useful to explore how to parddielthe algorithm.

2.3 Disributed and Parallel Framewor ks

Depending on how the input data is organised, @mtegories of distributed and paral-
lel data stream clustering algorithms exist: objssed where the data record is a
complete data object and attribute-based where dathitem is an attribute value.
Each category may take either incremeotao-phase learning approach.

For the incremental learning of object-based chsstihe central site receives the
input data streams, divides it into chunks and sehdm to the remote sites. Upon
receiving the local clustering models from the rénsites, the central site produces
the final output clusters. Bandyopadhyatyal. have used this approach for clustering
data streams in a peer-to-peer environment [14p &aal. showed an enhanced
Apache Storm framework for clustering social meth#a, by adding another process
between the central site and the participant rersités for synchronising changes to
the local models to avoid a bottleneck in commutisee [15]. Incremental learning
of clusters from attribute streams is similar. Tmdy differences are that each remote
site receives an input attribute stream directlthaut the central site to distribute the
data and that upon receiving the local cluster nspdbe central site integrates the
local attribute models into a global object-baskter model. Rodriguest al. used
this approach in the ODAC algorithm to cluster iatite streams [16]. The
incremental learning is simple, easy to implemert efficient. However, extensive
communication with the central site can result attlenecks. Besides, integrating all
attribute clusters with a central site becomesaisitde when the dimensionality of
data streams are high.

In the two-phase learning of object-based clustées]ocal models are saved in a
local buffer memory on each remote site, and anétsethe central site when there is
a query from the user or there are significant geanin the local models [17][18].
However, heavy computation is needed with the eégite to obtain the final output
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Fig. 1. Proposed TPICDS framework
clusters due to the large number of micro-clust@rgerrieri and Montresor presented
an improvement by making the remote sites commtmita reduce the number of
micro-clusters [19]. Karunaratnet al. also made an improvement using Apache
Storm where the remote sites save their local etig} models in a globally shared
memory so that the designated second central sitegses the local clusters into the
final clusters [19]. The two-phase learning of tdus from attribute streams is similar
to incremental learning by using buffers for locabdels. Gamat al. adopted this
approach in the DGClust algorithm to cluster ddtaasns in sensor networks [20].
The algorithm reduces data dimensions and hencencmications needed.

24  TheProposed TPICDS Framework

The proposed framework TPICDS combines the two cgatpnal approaches in the
two-phase hybrid system. At the online phase, its¢ éentral site receives the data
streams, divides it into chunks, and sends thethéaemote sites. Each remote site
receives its own data chunk, creates and mainisiresvn local cluster models in the
incremental fashion. At the offline phase, the secoentral site receives the local
models from the remote sites and presents the dladlal clusters (see Fig. 1). Our
research aims to embed the EINCKM algorithm witkttie proposed framework
where the second central site uses the same mémegy to form the global
clustering model.

3 Adapting EINCKM tothe Existing Parallelisms

In this section, we first briefly summarise thregital parallel frameworks that
already exist. We then describe how the EINCKM athm can intuitively adapt to
each framework. We then evaluate the performanceaoh adaptation empirically
using synthesised datasets.

3.1 Existing Parallel Frameworks

Three typical parallel frameworks exist. The regtion, hereby known as embarrass-
ingly parallel or basic parallelism (BP), simply kea multiple copies of the entire
algorithm and then runs each copy on each procg24gr Each processor must



complete all operations of the algorithm beforeeidiog next new data inputs. The
framework has the pros of being simple, and diyeethploys the principle of divide
and conquer by sharing the processing of input dgtthe available processors. We
use this framework as a basic benchmark for pedaoa evaluations later.

The parallel pipeline (PP) is an improvement oftthsic parallelism to streamline
several processors in a pipeline [22], which woaksfollows. A present processor
receives the output of a previous processor dspist, processes the data, generates
the output, and passes it on to the next proceEsmh processor has a certain degree
of independence so that when the next processaresses its output, the present
processor takes and processes its next data ihipigtframework not only divides the
workload among different processors but also furtimprove the degree of
parallelism within a sequential pipeline.

MapReduce parallel pipeline (MRPP) is a further ificgtion of PP [23]. First,
data stored in memory are divided into partitioard each partition is sent to a
different processor (Mapping). Each processor meee the data within the partition
and the processed outputs are then hashed to faweessors on another layer to
further process them (Reducing). The hashing cagelbermined by the relevance of
the outputs.

3.2 Algorithm Adaptation

All adaptations of the algorithm to the existingrfreworks mentioned above require
dividing the available processing resources intatre¢é and remote sites (in this
context, a site is a single core processor ondhgescomputer). The adaptation of the
algorithm to the basic parallelism is straightfordiaeach remote site finds the
clusters from the incoming chunk, merges them wétown existing clusters, prunes
them, and saves the resulting clusters into its lowal buffer memory.

The adaptation of the algorithm to the PP framewsrtione as follows. We first
divide all the available remote sites into groupghoee sites, and then arrange the
three sites into a pipeline. We then designatditbeof the three sites for thuild
Clustersfunction the second for thdlerge function, and the third for th€rune
function. When théuild Clustersite finishes the current chunk, it sends thetehss
to theMergesite. When theMerge site merges the clusters from the chunk with the
existing ones, th8uild Clustersite starts discovering clusters from the nextn&hu
When theMerge site finishes its task of merging clusters, itdsthe results to the
Prune site, and then starts working on the new clusten® the Build Clustersite.
ThePrunesite works in a similar fashion.

For the adaptation of the MRPP framework, the fasnhtral site in TPICDS
performs the mapping operation. The remote siteshfe Build Clusterfunction is
modified to include a further function for the hawgl) i.e. assigning similar local
clusters to a specifidMerge site. More precisely, &8uild Cluster site checks the
closest cluster’'s centroids and send them to theesmerger site, and Merge site
receives clusters from differefBuild Cluster sites to build aregional modelof
clustering. After that, th€rune site conducts the pruning of regional models and
sends them to the second central site in TPICD®. difference between the PP



adaptation and the MRPP adaptationb is thatMlkeege site in the PP framework
receives clusters only from thuild Clustersite within the same pipeline, whereas
the Mergesite in the MRPP merges clusters from more thanBuild Clustersite in
different pipelines.

3.3 Empirical Evaluation

In order to evaluate empirically the performancesath adaptation, we created two
collections of synthetic datasets, DS1 and DS2hEatlection include six datasets of
different sizes, i.e. 100,000, 200,000, 500,0000@,000, 1,500,000 and 2,000,000
data points of two dimensions. To simulate varigimes, shapes and numbers of
clusters, we used Gaussian distributions to ranggeherate spherical shape clusters
with different means, variances and number of memt@S1 and DS2 respectively
have four and thirty clusters. We acknowledge tmitdtions of synthesised datasets
in expressing the characteristics of data in ngdbitit synthesised datasets do allow us
to check the correctness of clustering by compatiiegresulting clusters to known
clusters.

A computer with 12 2.8GHz core processors and 16nt&@Bory under Microsoft
Windows7 was used to conduct the experiment. MATLRB17a was used to
implement the adapted algorithms and program thmemxent scripts. For each
experiment, we randomly selected data points fiteendataset to form data chunks of
1000 data points. The random selection simulatessttuation where there is no
control on the order of the arriving data points. minimise the random effect of the
selected data points to the performance of theriétigos for a specific experiment,
we repeated each experiment 100 times, and thentkekaverage of the speeds of
execution in seconds. The processors on the maah@eeonfigured as follows. For
the BP framework, we allocate three processors ea#Hchlwvhich has the entire
EINCKM algorithm. For the PP and MRPP frameworks, allocate three processors
(one forBuild Cluster one forMerge and one foPruné to form one parallel stream.
We allocate two processors serving as the two aksites in TPICDS. Fig. 2 shows
the performance of the adapted EINCKM algorithmteims of execution time.

Among the adapted algorithms, the BP adaptatioslasver than the PP and
MRPP. The two pipeline adaptations show consisfaster speeds due to the
additional parallelism gained from the pipeliframeworks. However, the MRPP
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adaptation consumes more time than the PP adaptationapping and hashing
similar local clusters to a merger. The PP adaptathowever, may still have
potential delays because the processor configuratioeach pipeline was fixed, and
some processors within the pipeline may have ta ¥eai the outputs from other
processors. Therefore, optimised and dynamic dllmes of processors to the needed
steps should be the right way to further explait plarallelism.

4  Optimised and Dynamic Parallel Pipeline Frameworks

4.1  An Optimised Parallel Pipeline Framework

The idea behind optimised parallel pipeline (ORBinework is to decide how many
processors should be statically allocated for estep of the EINCKM algorithm by
analysing the time complexity of the algorithm. Tii@e complexity of the entire
algorithm is estimated by the sum of the time caxipy for each of the three key
functions[10]. Let R represent the number of chunRké,the total number of data
points in a chunk plus the outliets the number of clustersthe number of iterations
until the clusters convergd, the number of clusters of the previous iteratiorhe
maximum number of data points in a new/existingiu k the number of clusters
from a new chunk, an8 the number of output clusters of merge functiohe Time
complexity isO(NKI) for theBuild Clusterfunction O0((Tn + kn)?) for the Merge
function, and0(Sn) for the Prune function. The expressions indicate that thkerge
function takes the longest amount of time in thestvgase. This is followed by the
Prunefunction. TheBuild Clusterfunction needs relatively the minimum amount of
time because the values fif K andl are normally small. In order to confirm the
results of the theoretical analysis, we tested dacbtion separately on synthesised
data chunks of different sizes. Fig. 3 illustrates execution time for each function at
different chunk sizes for DS1 and DS2 datasets. T® results confirm the
theoretical analysis results.

According to this understanding, we configure tl2echre machine in the following
way: two processors for thBuild Clusterfunction, four processors for thderge
function, and three processors for Breinefunction (see Section 4.3 for performance
test results), plus two processors serving asabecentral sites.
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4.2  Dynamic Parallel Pipeline Framework

The worst-case measure of time complexity does ahotiys reflect the reality.
Dynamic scheduling of resources based on actualuéee of each individual step
makes more sense in deciding how many processotsgdshe allocated to resolve the
bottleneck at the time. Therefore, a dynamic pekalipeline (DPP) framework is
proposed. In this framework, a minimum number afgeissors are initially allocated
as thebaselineprocessors for performing the clustering task. Gewtral processor is
then designated to the role sfhedulertby monitoring occupancy rates of the buffers
being used by the existing processors. A numbespafre processors are held in
reserve. A spare processor can be assigned totheirbaseline processors for a
specific function by the scheduler according to tieed for additional assistance as
indicated by the level of free buffer memory.

We encountered two immediate problems: (a) howetecs the right number of
baseline processors, and {imw to decide if there is a need for allocatingitoidal
resources. To solve the first problem, we allotgtelefault one processor for each of
the three key functions of the algorithm. To sdlve second problem, we monitor the
size of the buffers, decide where the possibleldatk may occur and then take a
decision to add/move a processor one at a time.eBoh iteration, the scheduler
checks the use of two buffers (Bfl and Bf2). If thefer use, i.e. use of the storage
space of the buffer, is below a minimum threshdfiin( Thr), the buffer is about to
become empty and hence more processors are negdeel fonction that outpuiato
the buffer. If the buffer usage is above a maximhbrashold fax_Thi), it means that
the buffer is about to become full and more prooesare needed for the function that
inputsfrom the buffer. Fig. 4 shows four decision rules fog two possible situations:
(a) there are processors in the reserve (assignipgcessor), and (b) there are no
processors in the reserve (moving a processor).

Dynamic Parallel Pipeline Algorithm:
Algorithm Steps:

if size(Reserve) > 0 then // (a) First situation when havereserved processors
if size(Bf1) < Min_Thr & size(Bf2) < Min_Thr then add processor to Build Cluster;
elseif size(Bf1) < Min_Thr & size(Bf2) > Max_Thr then add processor to Prune;
elseif size(Bf1) > Max_Thr & size(Bf2) < Min_Thr then add processor to Mergeg
elseif size(Bf1) > Max_Thr & size(Bf2) > Max_Thr then add processor to Prune;/Merge;
else I/ (b) Second situation when do not have reserved processors
if size(Bf1) < Min_Thr & size(Bf2) < Min_Thr
then take one processor from Pruneg / Merges and add it to Build Cluster;
if size(Bf1) < Min_Thr & size(Bf2) > Max_Thr
then take one processor from Merges and add it to Pruneg
if size(Bf1) > Max_Thr & size(Bf2) < Min_Thr
then take one processor from Pruneg and add it to Merge,

if size(Bf1) > Max_Thr & size(Bf2) > Max_Thr
then take one processor from Build Cluster; and add it to Pruneg / Merges

Fig. 4. Dynamic parallel pipeline framework



4.3  Experimental Resultsand Discussion

We used the two collections of datasets to tesiptréormance of the OPP and the
DPP frameworks. The results in Fig. 5 show thahlfoPP and DPP are consistently
faster than the PP framework, confirming that optéd and dynamic allocations of
processing resources are better than the everibdigtn of the resources among the
processing steps. At the same time, the DPP framkep&rforms better than the OPP
one because the statically allocated processo@PiR does not reflect the dynamic
reality.

One issue that affects the performance of the D&fdwork is the setting of the
two thresholds for the buffer use. For the tesés@nted in Fig. 5, we sktin_ Thr =
20% andMax_Thr = 80%. Setting the range between the two threshtdd low
means too many scheduling activities for additiamealources. Setting the range too
big means increasing the risk of the buffers beimgpty or full causing time delay in
the process. Other factors such as the speedafidatal and buffer sizes also play a
role. A proper sensitivity study regarding the #trelds and the search for optimal
thresholds certainly require further research.

We also compare the DPP version of the EINCKM atgor against the BP
versions of three typical existing algorithms o€ teame category, i.e. STREAM,
Adapt.KM [24], and Inc.KM [25]. The results showsfar execution time by the
EINCKM algorithm than that by the Adapt.KM and time.KM algorithms due to the
dynamic allocations of processing resources to rigbt place in the EINCKM
algorithm. The EINCKM algorithm speed is close hatt but slower than that of the
STREAM algorithm (see Fig. 6). This is mainly besauhe STREAM algorithm
does not consider the concept drift issue and dentify outliers as the EINCKM
does.
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Regarding the correctness of the output clustees,cenfirm that all the five
versions of parallel EINCKM algorithm produce catreglobal clusters after the
whole datasets are processed. We have evideneerordtrate the correctness of the
final global cluster models by comparing the outgusters by the algorithms against
the ground truth clusters in terms of the corresgn@etrics such as purity, entropy,
and the sum of square errors measurements. Howeseause of the constraints of
the limited space, we are unable to present tideace here.

Next generation of online real-time systems reqgubig data platforms to process
a huge amount of continuously arriving data undanmutational constraints [26].
This kind of systems raises new issues regardiagctinrent big data infrastructures.
One of the main issues is that most current platfoare not intentionally built to
consider real-time performance issues. Another nissue is the lack of clear
computational models for processing big data tlealccbe supported by the current
frameworks [8]. Recent attempts to address thesessinclude a study of analysing
patterns in data stream processing and associ#tiegpatterns with performance
requirements [4], and an effort in improving thenputational model for distributed
stream processing and formalising the model throegtensions to the Storm
framework for real-time application [27]. Our pragsaol parallel frameworks can be
considered as another attempt to address the tinfcagre issue for real-time
applications at least on the local individual maehilevel. The strengths and
limitations of the proposed framework have not hdmut can only be realistically
evaluated within the context of a large-scale ifisted processing environment.

5 Conclusion and Future Work

This paper made two main contributions: (a) adgpdmewly developed data stream
clustering algorithm EINCKM to existing parallelameworks, and (b) developing
static and dynamic allocation schemes for utilisingilable processors, both within a
two-phase learning approach (TPICDS). The adaptatanade easier because the
algorithm has a modular structure, making it easgdapt pipeline frameworks. The
evidence shows that the static and dynamic allonatiof processing resources is
more efficient than simple adaptations.

The understandings we take from our work are af felds. Firstly, there is a
room to utilising as much as possible the availab#urces within a single computer
before we bring in a group of computers to share workload distributedly.
Secondly, the two learning approaches for dataastrelustering are artificially
separated. The paper shows that a hybrid way ofingethem in a parallel pipeline is
possible.

Future work includes an immediate sensitivity as@lyfor the buffer thresholds
and more extensive testing of the proposed dynamiallel pipeline version of the
EINCKM algorithm, and further improvements to dynarallocation of resources by
using more sophisticated techniques including nreckearning techniques. Reclaim
of processors into the reserve should also be dered when the speed of incoming
data arrival slows down and there is no need toaulsgge number of processors to
share out a small amount of workload. Another ingratrwork is the integration and



testing of the dynamic parallel pipeline on a stngomputer with a distributed
network environment.
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