Abstract
Wireless sensor networks are formed by spatially distributed sensors, which communicate in a wireless way. This network can monitor various kinds of environment and physical conditions like movement, noise, light, humidity, images, chemical substances etc. A given area needs to be fully covered with minimal number of sensors and the energy consumption of the network needs to be minimal too. We propose several algorithms, based on Ant Colony Optimization, to solve the problem. We study the algorithms behaviour when the number of ants varies from 1 to 10. We apply InterCriteria analysis to study relations between proposed algorithms and number of ants and analyse correlation between them.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Atanassov, K.: Index Matrices: Towards an Augmented Matrix Calculus. Studies in Computational Intelligence, vol. 573. Springer, Basel (2014). https://doi.org/10.1007/978-3-319-10945-9
Atanassov, K.: Intuitionistic Fuzzy Sets, VII ITKR Session, Sofia, 20–23 June 1983 (1983). Reprinted: Int J Bioautomation, 20(S1), 2016, S1–S6
Atanassov, K.: Review and New Results on Intuitionistic Fuzzy Sets, Mathematical Foundations of Artificial Intelligence Seminar, Sofia (1988). Preprint IM-MFAIS-1-88, Reprinted: Int J Bioautomation, 20(S1), 2016, S7–S16
Atanassov, K., Atanassova, V., Gluhchev, G.: InterCriteria analysis: ideas and problems. Notes Intuitionistic Fuzzy Sets 21(2), 81–88 (2015)
Atanassov, K., Mavrov, D., Atanassova, V.: Intercriteria decision making: a new approach for multicriteria decision making based on index matrices and intuitionistic fuzzy sets. Issues IFSs GNs 11, 1–8 (2014)
Atanassov, K., Szmidt, E., Kacprzyk, J.: On intuitionistic fuzzy pairs. Notes Intuitionistic Fuzzy Sets 19(3), 1–13 (2013)
Fidanova, S., Marinov, P., Alba, E.: Ant algorithm for optimal sensor deployment. In: Madani, K., Correia, A.D., Rosa, A., Filipe, J. (eds.) Computational Intelligence, Studies of Computational Intelligence, vol. 399, pp. 21–29. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27534-0_2
Fidanova, S., Marinov, P., Paprzycki, M.: Influence of the number of ants on multi-objective ant colony optimization algorithm for wireless sensor network layout. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2013. LNCS, vol. 8353, pp. 232–239. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43880-0_25
Fidanova, S., Marinov, P., Paprzycki, M.: Influence of the number of ants on multi-objective ant colony optimization algorithm for wireless sensor network layout. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2013. LNCS, vol. 8353, pp. 232–239. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43880-0_25
Fidanova, S., Shindarov, M., Marinov, P.: Wireless sensor positioning using ACO algorithm. In: Sgurev, V., Yager, R.R., Kacprzyk, J., Atanassov, K.T. (eds.) Recent Contributions in Intelligent Systems. SCI, vol. 657, pp. 33–44. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-41438-6_3
Fidanova, S., Roeva, O., Paprzycki, M., Gepner, P.: InterCriteria analysis of ACO start startegies. In: Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, pp. 547–550 (2016)
Hernandez, H., Blum, C.: Minimum energy broadcasting in wireless sensor networks: an ant colony optimization approach for a realistic antenna model. J. Appl. Soft Comput. 11(8), 5684–5694 (2011)
Ikonomov, N., Vassilev, P., Roeva, O.: ICrAData - software for InterCriteria analysis. Int. J. Bioautomation 22(1), 1–10 (2018)
Jourdan, D.B.: Wireless sensor network planning with application to UWB localization in GPS-denied environments, Massachusets Institute of Technology, Ph.D. thesis (2000)
Konstantinidis, A., Yang, K., Zhang, Q., Zainalipour-Yazti, D.: A multiobjective evolutionary algorithm for the deployment and power assignment problem in wireless sensor networks. J. Comput. Netw. 54(6), 960–976 (2010)
Molina, G., Alba, E., Talbi, E.G.: Optimal sensor network layout using multi-objective Metaheuristics. Univers. Comput. Sci. 14(15), 2549–2565 (2008)
Pottie, G.J., Kaiser, W.J.: Embedding the internet: wireless integrated network sensors. Commun. ACM 43(5), 51–58 (2000)
Krawczak, M., Bureva, V., Sotirova, E., Szmidt, E.: Application of the InterCriteria decision making method to universities ranking. In: Atanassov, K.T., et al. (eds.) Novel Developments in Uncertainty Representation and Processing. AISC, vol. 401, pp. 365–372. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26211-6_31
Todinova, S., Mavrov, D., Krumova, S., Marinov, P., Atanassova, V., Atanassov, K., Taneva, S.G.: Blood plasma thermograms dataset analysis by means of InterCriteria and correlation analyses for the case of colorectal cancer. Int. J. Bioautomation 20(1), 115–124 (2016)
Wolf, S., Merz, P.: Evolutionary local search for the minimum energy broadcast problem. In: van Hemert, J., Cotta, C. (eds.) EvoCOP 2008. LNCS, vol. 4972, pp. 61–72. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78604-7_6
Xu, Y., Heidemann, J., Estrin, D.: Geography informed energy conservation for ad hoc routing. In: Proceedings of the 7th ACM/IEEE Annual International Conference on Mobile Computing and Networking, Italy, pp. 70–84 (2001)
Acknowledgments
Work presented here is partially supported by the Bulgarian National Scientific Fund under Grants DFNI DN 12/5 “Efficient Stochastic Methods and Algorithms for Large-Scale Problems” and DN 02/10“New Instruments for Knowledge Discovery from Data, and their Modelling”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Fidanova, S., Roeva, O. (2019). InterCriteria Analysis of Different Variants of ACO Algorithm for Wireless Sensor Network Positioning. In: Nikolov, G., Kolkovska, N., Georgiev, K. (eds) Numerical Methods and Applications. NMA 2018. Lecture Notes in Computer Science(), vol 11189. Springer, Cham. https://doi.org/10.1007/978-3-030-10692-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-10692-8_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-10691-1
Online ISBN: 978-3-030-10692-8
eBook Packages: Computer ScienceComputer Science (R0)