Skip to main content

Discrete Analog of the Jacobi Set for Vector Fields

  • Conference paper
  • First Online:
Computational Topology in Image Context (CTIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11382))

Included in the following conference series:

  • 562 Accesses

Abstract

The Jacobi set is a useful descriptor of mutual behavior of functions defined on a common domain. We introduce the piecewise linear Jacobi set for general vector fields on simplicial complexes. This definition generalizes the definition of the Jacobi set for gradients of functions introduced by Edelsbrunner and Harer.

This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan (program 0115PK03029) and Russian Foundation for Basic Research (grant 15-01-01671a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Local and global comparison of continuous functions. In: Proceedings of 16th IEEE Conference on Visualization, pp. 275–280. IEEE Computer Society (2004). https://doi.org/10.1109/VISUAL.2004.68

  2. Wolpert, N.: An exact and efficient approach for computing a cell in an arrangement of quadrics. Ph.D. thesis, Universität des Saarlandes (2002)

    Google Scholar 

  3. Wolpert, N.: Jacobi curves: computing the exact topology of arrangements of non-singular algebraic curves. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 532–543. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39658-1_49

    Chapter  Google Scholar 

  4. Edelsbrunner, H., Harer, J.: Jacobi sets of multiple morse functions. In: Cucker, F., DeVore, R., Olver, P., Süli, E. (eds.) Foundations of Computational Mathematics, Minneapolis 2002. London Mathematical Society Lecture Note Series, pp. 37–57. Cambridge University Press, Cambridge (2004). https://doi.org/10.1017/CBO9781139106962.003

    Chapter  MATH  Google Scholar 

  5. Novikov, S., Taimanov, I.: Modern Geometric Structures and Fields. American Mathematical Society, Providence (2006)

    Book  Google Scholar 

  6. Natarajan, N.S.: Simplification of jacobi sets. In: Pascucci, V., Tricoche, X., Hagen, H., Tierny, J. (eds.) Topological Methods in Data Analysis and Visualization: Theory, Algorithms, and Applications. MATHVISUAL, pp. 91–102. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-15014-2_8

    Chapter  Google Scholar 

  7. Bhatia, H., Wang, B., Norgard, G., Pascucci, V., Bremer, P.T.: Local, smooth, and consistent jacobi set simplification. Comput. Geom.: Theory Appl. 48(4), 311–332 (2015). https://doi.org/10.1016/j.comgeo.2014.10.009

    Article  MathSciNet  MATH  Google Scholar 

  8. NOAA Operational Model Archive and Distribution System. Data Transfer: NCEP GFS Forecasts (0.25 degree grid). http://nomads.ncep.noaa.gov/cgi-bin/filter_gfs_0p25_1hr.pl?dir=%2Fgfs.2018110100

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pavlov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adilkhanov, A.N., Pavlov, A.V., Taimanov, I.A. (2019). Discrete Analog of the Jacobi Set for Vector Fields. In: Marfil, R., Calderón, M., Díaz del Río, F., Real, P., Bandera, A. (eds) Computational Topology in Image Context. CTIC 2019. Lecture Notes in Computer Science(), vol 11382. Springer, Cham. https://doi.org/10.1007/978-3-030-10828-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10828-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10827-4

  • Online ISBN: 978-3-030-10828-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics