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Abstract. This paper introduces a fast and efficient network architec-
ture, NeXtVLAD, to aggregate frame-level features into a compact fea-
ture vector for large-scale video classification. Briefly speaking, the basic
idea is to decompose a high-dimensional feature into a group of rela-
tively low-dimensional vectors with attention before applying NetVLAD
aggregation over time. This NeXtVLAD approach turns out to be both
effective and parameter efficient in aggregating temporal information. In
the 2nd Youtube-8M video understanding challenge, a single NeXtVLAD
model with less than 80M parameters achieves a GAP score of 0.87846
in private leaderboard. A mixture of 3 NeXtVLAD models results in
0.88722, which is ranked 3rd over 394 teams. The code is publicly avail-
able at https://github.com/linrongc/youtube-8m.
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1 Introduction

The prevalence of digital cameras and smart phones exponentially increases the
number of videos, which are then uploaded, watched and shared through inter-
net. Automatic video content classification has become a critical and challenging
problem in many real world applications, including video-based search, recom-
mendation and intelligent robots etc. To accelerate the pace of research in video
content analysis, Google AI launched the second Youtube-8M video understand-
ing challenge, aiming to learn more compact video representation under limited
budget constraints. Because of both unprecedent scale and diversity of Youtube-
8M dataset[1], they also provided the frame-level visual and audio features which
are extracted by pre-trained convolutional neural networks (CNNs). The main
challenge is how to aggregate such pre-extracted features into a compact video-
level representation effectively and efficiently.

NetVLAD, which was developed to aggregate spatial representation for the
task of place recognition[2], was found to be more effective and faster than
common temporal models, such as LSTM[3] and GRU[4], for the task of tem-
poral aggregation of visual and audio features[5]. One of the main drawbacks
of NetVLAD is that the encoded features are in high dimension. A non-trivial
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classification model based on those features would need hundreds of millions of
parameters. For instance, a NetVLAD network with 128 clusters will encode
a feature of 2048 dimension as an vector of 262,144 dimension. A subsequent
fully-connected layer with 2048-dimensional outputs will result in about 537M
parameters. The parameter inefficiency would make the model harder to be op-
timized and easier to be overfitting.

To handle the parameter inefficiency problem, inspired by the work of ResNeXt[6],
we developed a novel neural network architecture, NeXtVLAD. Different from
NetVLAD, the input features are decomposed into a group of relatively lower-
dimensional vectors with attention before they are encoded and aggregated over
time. The underlying assumption is that one video frame may contain multi-
ple objects and decomposing the frame-level features before encoding would be
beneficial for models to produce a more concise video representation. Exper-
imental results on Youtube-8M dataset have demonstrated that our proposed
model is more effective and efficient on parameters than the original NetVLAD
model. Moreover, the NeXtVLAD model can converge faster and more resistant
to overfitting.

2 Related Works

In this section, we provide a brief review of most relevant researches on feature
aggregation and video classification.

2.1 Feature Aggregation for Compact Video Representation

Before the era of deep neural networks, researchers have proposed many en-
coding methods, including BoW (Bag of visual Words)[7], FV (Fisher Vector)[8]
and VLAD (Vector of Locally Aggregated Descriptors)[9] etc., to aggregate local
image descriptors into a global compact vector, aiming to achieve more compact
image representation and improve the performance of large-scale visual recogni-
tion. Such aggregation methods are also applied to the researches of large-scale
video classification in some early works[10][11]. Recently, [2] proposed a differen-
tiable module, NetVLAD, to integrate VLAD into current neural networks and
achieved significant improvement for the task of place recognition. The archi-
tecture was then proved to very effective in aggregating spatial and temporal
information for compact video representation[5][12].

2.2 Deep Neural Networks for Large-Scale Video Classification

Recently, with the availability of large-scale video datasets[13][14][1] and mass
computation power of GPUs, deep neural networks have achieved remarkable
advances in the field of large-scale video classification[15][16][17][18]. These ap-
proaches can be roughly assigned into four categories: (a) Spatiotemporal
Convolutional Networks[13][17][18], which mainly rely on convolution and
pooling to aggregate temporal information along with spatial information. (b)
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Two Stream Networks[16][19][20][21], which utilize stacked optical flow to
recognize human motions in addition to the context frame images. (c) Recur-
rent Spatial Networks[15][22], which applies Recurrent Neural Networks, in-
cluding LSTM or GRU to model temporal information in videos. (d) Other
approaches[23][24][25][26], which use other solutions to generate compact fea-
tures for video representation and classification.

3 Network Architecture for NeXtVLAD

We will first review the NetVLAD aggregation model before we dive into the
details of our proposed NeXtVLAD model for feature aggregation and video
classification.

3.1 NetVLAD Aggregation Network for Video Classification

x

softmax
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c

∑
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video-level
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Fig. 1. Schema of NetVLAD model for video classification. Formulas in red denote
the number of parameters (ignoring biases or batch normalization). FC means fully-
connected layer.

Considering a video with M frames, N -dimensional frame-level descriptors
x are extracted by a pre-trained CNN recursively. In NetVLAD aggregation of
K clusters, each frame-level descriptor is firstly encoded to be a feature vector
of N ×K dimension using the following equation:

vijk = αk(xi)(xij − ckj)
i ∈ {1, ...,M}, j ∈ {1, ..., N}, k ∈ {1, ...,K}

(1)

where ck is the N -dimensional anchor point of cluster k and αk(xi) is a soft
assignment function of xi to cluster k, which measures the proximity of xi and
cluster k. The proximity function is modeled using a single fully-connected layer
with softmax activation,

αk(xi) =
ew

T
k xi+bk∑K

s=1 e
wT

s xi+bs
. (2)
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Secondly, a video-level descriptor y can be obtained by aggregating all the frame-
level features,

yjk =

M∑
i

vijk (3)

and intra-normalization is applied to suppress bursts[27]. Finally, the constructed
video-level descriptor y is reduced to an H-dimensional hidden vector via a fully-
connected layer before being fed into the final video-level classifier.

As shown in Figure 1, the parameter number of NetVLAD model before
video-level classification is about

N ×K × (H + 2), (4)

where the dimension reduction layer (second fully-connected layer) accounts for
the majority of total parameters. For instance, a NetVLAD model with N =
1024, K = 128 and H = 2048 contains more than 268M parameters.

3.2 NeXtVLAD Aggregation Network
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Fig. 2. Schema of our NeXtVLAD network for video classification. Formulas in red de-
note the number of parameters (ignoring biases or batch normalization). FC represents
a fully-connected layer. The wave operation means a reshape transformation.

In our NeXtVLAD aggregation network, the input vector xi is first expanded
as ẋi with a dimension of λN via a linear fully-connected layer, where λ is a
width multiplier and it is set to be 2 in all of our experiments. Then a reshape
operation is applied to transform ẋ with a shape of (M,λN) to x̃ with a shape
of (M,G, λN/G), in which G is the size of groups. The process is equivalent to

splitting ẋi into G lower-dimensional feature vectors
{
x̃gi

∣∣∣g ∈ {1, ..., G}}, each of

which is subsequently represented as a mixture of residuals from cluster anchor
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points ck in the same lower-dimensional space:

vgijk = αg(ẋi)αgk(ẋi)(x̃
g
ij − ckj)

g ∈ {1, ..., G}, i ∈ {1, ...,M}, j ∈ {1, ..., λN
G
}, k ∈ {1, ...,K},

(5)

where the proximity measurement of the decomposed vector x̃gi consists of two
parts for the cluster k:

αgk(ẋi) =
ew

T
gkẋi+bgk∑K

s=1 e
wT

gsẋi+bgs
, (6)

αg(ẋi) = σ(wTg ẋi + bg), (7)

in which σ(.) is a sigmoid function with output scale from 0 to 1. The first part
αgk(ẋi) measures the soft assignment of x̃gi to the cluster k, while the second
part αg(ẋi) can be regarded as an attention function over groups.

Then, a video-level descriptor is achieved via aggregating the encoded vectors
over time and groups:

yjk =
∑
i,g

vgijk, (8)

after which we apply an intra-normalization operation, a dimension reduction
fully-connected layer and a video-level classifier as same as those of the NetVLAD
aggregation network.

As noted in Figure 2, because the dimension of video-level descriptors yjk is
reduced by G times compared to NetVLAD, the number of parameters shrinks.
Specifically, the total number of parameters is:

λN(N +G+K(G+
H + 1

G
)). (9)

Since G is much smaller than H and N , roughly speaking, the number of pa-
rameters of NeXtVLAD is about G

λ times smaller than that of NetVLAD. For
instance, a NeXtVLAD network with λ = 2, G = 8, N = 1024, K = 128 and
H = 2048 only contains 71M+ parameters, which is about 4 times smaller than
that of NetVLAD, 268M+.

3.3 NeXtVLAD Model and SE Context Gating

The basic model we used for 2nd Youtube-8M challenge has the similar archi-
tecture with the winner solution[5] for the first Youtube-8M challenge. Video
and audio features are encoded and aggregated separately with a two-stream ar-
chitecture. The aggregated representation is enhanced by a SE Context Gating
module, aiming to modeling the dependency among labels. At last, a logistic
classifier with sigmoid activation is adopted for video-level multi-label classifica-
tion.
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Fig. 3. Overview of our NeXtVLAD model designed for Youtube-8M video classifica-
tion.

Inspired by the work of Squeeze-and-Excitation networks[28], as shown in
Figure 4, the SE Context Gating consists of 2 fully-connected layers with less
parameters than the original Context Gating introduced in [5]. The total number
of parameters is:

2F 2

r
(10)

where r denotes the reduction ratio that is set to be 8 or 16 in our experi-
ments. During the competition, we find that reversing the whitening process,

FC BN

R
eL

u

FC BN

Si
gm

o
id

x

 B x F

B x F / r

B x F 

Y

Fig. 4. The schema of the SE Context Gating. FC denotes fully-connected and BN
denotes batch normalization. B represents the batch size and F means the feature size
of x.

which is applied after performing PCA dimensionality reduction of frame-level
features, is beneficial for the generalization performance of NeXtVLAD model.
The possible reason is that whitening after PCA will distort the feature space
by eliminating different contributions between feature dimensions with regard
to distance measurements, which could be critical for the encoder to find better
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anchor points and soft assignments for each input feature. Since the Eigen values{
ej
∣∣j ∈ {1, ..., N}} of PCA transformation is released by the Google team, we

are able to reverse the whitening process by:

x̂j = xj ∗
√
ej (11)

where x and x̂ are the input and reversed vector respectively.

3.4 Knowledge Distillation with On-the-fly Naive Ensemble

Knowledge distillation[29][30][31] was designed to transfer the generalization
ability of the cumbersome teacher model to a relatively simpler student network
by using prediction from teacher model as an additional “soft target” during
training. During the competition, we tried the network architecture introduced
in [32] to distill knowledge from a on-the-fly mixture prediction to each sub-
model.

NeXtVLAD Model

NeXtVLAD Model

NeXtVLAD Model

Frame-level
Data

Gate

Stack
Mixture

Prediction

Prediction

Prediction

Prediction

logits

average

rank soft target

Fig. 5. Overview of a mixture of 3 NeXtVLAD models with on-the-fly knowledge
distillation. The orange arrows indicate the distillation of knowledge from mixture
predictions to the sub-models.

As shown in Figure 5, the logits of the mixture predictions ze is a weighted
sum of logits

{
zm
∣∣m ∈ {1, 2, 3}} from the 3 corresponding sub-models:

ze =

3∑
m=1

am(x̄) ∗ zm (12)

where am(.) represents the gating network,

am(x̄) =
ew

T
mx̄+bm∑3

s e
wT

s x̄+bs
(13)
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and x̄ represents the frame mean of input features x. The knowledge of the
mixture prediction is distilled to each sub-model through minimizing the KL
divergence written as:

Lm,ekl =

C∑
c=1

pe(c) log
pe(c)

pm(c)
, (14)

where C is the total number of class labels and p(.) represents the rank soft
prediction:

pm(c) =
exp(zmc /T )∑C
s=1 exp(z

m
s /T )

, pe(c) =
exp(zec/T )∑C
s=1 exp(z

e
s/T )

. (15)

where T is a temperature which can adjust the relative importance of logits. As
suggested in [29], larger T will increase the importance of logits with smaller val-
ues and encourage models to share more knowledge about the learned similarity
measurements of the task space. The final loss of the model is:

L =

3∑
m=1

Lmbce + Lebce + T 2 ∗
3∑

m=1

Lm,ekl (16)

where Lmbce (Lebce) means the binary cross entropy between the ground truth
labels and prediction from model m (mixture prediction).

4 Experimental Results

This section provides the implementation details and presents our experimental
results on the Youtube-8M dataset[1].

4.1 Youtube-8M Dataset

Youtube-8M dataset (2018) consists of about 6.1M videos from Youtube.com,
each of which has at least 1000 views with video time ranging from 120 to 300
seconds and is labeled with one or multiple tags (labels) from a vocabulary
of 3862 visual entities. These videos further split into 3 partitions: train(70%),
validate(20%) and test(10%). Along with the video ids and labels, visual and
audio features are provided for every second of the videos, which are referred
as frame-level features. The visual features consists of hidden representations
immediately prior to the classification layer in Inception[33], which is pre-trained
on Imagenet[34]. The audio features are extracted from a audio classification
CNN[35]. PCA and whitening are then applied to reduce the dimension of visual
and audio feature to 1024 and 128 respectively.

In the 2nd Youtube-8M video understanding challenge, submissions are evalu-
ated using Global Average Precision(GAP) at 20. For each video, the predictions
are sorted by confidence and the GAP score is calculated as:

GAP =

20∑
i=1

p(i) ∗ r(i) (17)
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in which p(i) is the precision and r(i) is the recall given the top i predictions.

4.2 Implementation Details

Our implementation is based on the TensorFlow[36] starter code1. All of the
models are trained using the Adam optimizer[37] with an initial learning rate
of 0.0002 on two Nvidia 1080 TI GPUs. The batch size is set to be 160 (80 on
each GPU). We apply a l2(1e-5) regularizer to the parameters of the video-level
classifier and use a dropout ratio of 0.5 aiming to avoid overfitting. No data
augmentation is used in training NeXtVLAD models and the padding frames
are masked out during the aggregation process via:

vgijk = mask(i)αg(ẋi)αgk(ẋi)(x̃
g
ij − ckj) (18)

where

mask(i) =

{
1 if i <= M

0 else
(19)

In all the local experiments, models are trained for 5 epochs (about 120k
steps) using only the training partition and the learning rate is exponentially
decreased by a factor of 0.8 every 2M samples. Then the model is evaluated
using only about 1

10 of the evaluation partition, which is consistently about
0.002 smaller than the score at public leaderboard2 for the same models. As for
the final submission model, it is trained for 15 epochs (about 460k steps) using
both training and validation partitions and the learning rate is exponentially
decreased by a factor of 0.9 every 2.5M samples. More details can be found at
https://github.com/linrongc/youtube-8m.

4.3 Model Evaluation

Table 1. Performance (on local validation partition) comparison for single aggregation
models. The parameters inside parenthesis represents (group number G, dropout ratio,
cluster number K, hidden size H)

Model Parameter GAP

NetVLAD (-, 0.5drop, 128K, 2048H) 297M 0.8474
NetVLAD random (-, 0.5drop, 256K, 1024H) 274M 0.8507
NetVLAD small (-, 0.5drop, 128K, 2048H) 88M 0.8582

NeXtVLAD (32G, 0.2drop, 128K, 2048H) 55M 0.8681
NeXtVLAD (16G, 0.2drop, 128K, 2048H) 58M 0.8685
NeXtVLAD (16G, 0.5drop, 128K, 2048H) 58M 0.8697
NeXtVLAD (8G, 0.5drop, 128K, 2048H) 89M 0.8723

1 https://github.com/google/youtube-8m
2 https://www.kaggle.com/c/youtube8m-2018/leaderboard

https://github.com/linrongc/youtube-8m
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We evaluate the performance and parameter efficiency of individual aggre-
gation models in Table 1. For fair comparison, we apply a reverse whitening
layer for video features, a dropout layer after concatenation of video and audio
features and a logistic model as the video-level classifier in all the presented
models. Except for NetVLAD random which sampled 300 random frames for
each video, all the other models didn’t use any data augmentation techniques.
NetVLAD small use a linear fully-connected layer to reduce the dimension of
inputs to 1

4 of the original size for visual and audio features, so that the number
of parameters are much comparable to other NeXtVLAD models.

24000 48000 72000 96000 120000
Step

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Tr
ai

n 
GA

P

NetVLAD_random(0.5drop, 256K, 1024H)
NeXtVLAD(8g, 0.5drop, 128K, 2048H)

Fig. 6. Training GAP on Youtube-8M dataset. The ticks of x axis are near the end of
each epoch.

From Table 1, one can observe that our proposed NeXtVLAD neural net-
works are more effective and efficient on parameters than the original NetVLAD
model by a significantly large margin. With only about 30% of the size of
NetVLAD random model[5], NeXtVLAD increase the GAP score by about 0.02,
which is a significant improvement considering the large size of Youtub-8M
dataset. Furthermore, as shown in Figure 6, the NeXtVLAD model is converging
faster, which reaches a training GAP score of about 0.85 in just 1 epoch.

Surprisingly, the NetVLAD model performs even worse than the NetVLAD small
model, which indicates NetVLAD models tend to overfit the training dataset.
Another interesting observation in Figure 6 is that the most of GAP score gains
happens around the beginning of a new epoch for NetVLAD model. The obser-
vation implies that the NetVLAD model are more prone to remember the data
instead of find useful feature patterns for generalization.

To meet the competition requirements, we use an ensemble of 3 NeXtVLAD
models with parameters (0.5drop, 112K, 2048H), whose size is about 944M bytes.
As shown in Table 2, training longer can always lead to better performance of
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Table 2. The GAP scores of submissions during the competition. All the other pa-
rameters used are (0.5drop, 112K, 2048H). The final submissions are tagged with *

Model Parameter Private GAP Public GAP

single NeXtVLAD(460k steps) 79M 0.87846 0.87910
3 NeXtVLAD (3T, 250k steps) 237M 0.88583 0.88657
3 NeXtVLAD (3T, 346k steps) 237M 0.88681 0.88749
3 NeXtVLAD* (3T, 460k steps) 237M 0.88722 0.88794
3 NeXtVLAD* (3T, 647k steps) 237M 0.88721 0.88792

NeXtVLAD models. Our best submission is trained about 15 epochs, which
takes about 3 days on two 1080 TI GPUs. If we only retain one branch from
the mixture model, a single NeXtVLAD model with only 79M parameters will
achieve a GAP score of 0.87846, which could be ranked 15/394 in the final
leaderboard.

Due to time and resource limit, we set the parameters T = 3, which is the
temperature in on-the-fly knowledge distillation, as suggested in [32]. We ran an
AB test experiments after the competition, as shown in 3, somehow indicates
T = 3 is not optimal. Further tuning of the parameter could result in a better
GAP score.

Table 3. The results (on local validation set) of an AB test experiment for T tuning.

Model Parameter local GAP

3 NeXtVLAD (0T, 120k steps) 237M 0.8798
3 NeXtVLAD (3T, 120k steps) 237M 0.8788

5 Conclusion

In this paper, a novel NeXtVLAD model is developed to support large-scale video
classification under budget constraints. Our NeXtVLAD model has provided
a fast and efficient network architecture to aggregate frame-level features into
a compact feature vector for video classification. The experimental results on
Youtube-8M dataset have demonstrated that our proposed NeXtVLAD model
is more effective and efficient on parameters than the previous NetVLAD model,
which is the winner of the first Youtube-8M video understanding challenge.
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