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Abstract. Despite advances in gait analysis tools, including optical mo-
tion capture and wireless electrophysiology, our understanding of human
mobility is largely limited to controlled conditions in a clinic and/or lab-
oratory. In order to examine human mobility under natural conditions,
or the ’wild’, this paper presents a novel markerless model to obtain gait
patterns by localizing feet in the egocentric video data. Based on a belt-
mounted camera feed, the proposed hybrid FootChaser model consists
of: 1) the FootRegionProposer, a ConvNet that proposes regions with
high probability of containing feet in RGB frames (global appearance
of feet), and 2) LocomoNet, which is sensitive to the periodic gait pat-
terns, and further examines the temporal content in the stacks of optical
flow corresponding to the proposed region. The LocomoNet significantly
boosted the overall model’s result by filtering out the false positives pro-
posed by the FootRegionProposer. This work advances our long-term
objective to develop novel markerless models to extract spatiotemporal
gait parameters, particularly step width, to complement existing inertial
measurement unit (IMU) based methods.

Keywords: Ambulatory gait analysis · wearable sensors · deep convo-
lutional neural networks · egocentric vision · optical flow

1 Introduction

The lack of clinical information on a day-to-day basis hinders our understanding
of disease trajectories on multiple time scales, including diseases affecting gait
and balance (e.g., neurological conditions). Free-living (habitual) ambulatory
gait analysis has demonstrated unique insight into disease progression, with im-
plications for diagnosis and evaluating treatment efficacy. For example, spatial
metrics (e.g., step length), temporal metrics (e.g., step time), and gait irregular-
ities (e.g., compensatory balance reactions or near-falls) of free-living mobility
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behaviour have demonstrated promising capabilities to predict the risk of falling
in older adult populations.

The recent explosion of ambient sensors (e.g., motion capture sensors, force
mats), smart phones, and wearable sensor systems (e.g., inertial measurement
units, IMUs) have facilitated the emergence of new techniques to monitor gait
and balance control in natural environments and during everyday activities [8,
22, 29]. Embedded into living environments, ambient third-person video (TPV)
and depth cameras (e.g., Microsoft Kinect) have been investigated as means to
extract gait parameters [14, 10], detect episodes of freezing of gait in Parkinson’s
disease [5], detect falls, and longitudinal changes in the patient’s mobility pat-
terns [4, 36, 3]. While TPV systems have demonstrated potential to detect small
changes over long periods (i.e., months to years), these approaches suffer from
visual occlusions (e.g., furniture), difficulty handling multiple residents, and ex-
traction of spatiotemporal parameters when the full-body view is unavailable.
Moreover, they are restricted to fixed areas. Considering mobility is characterized
by moving the body from one location (i.e., environment) to another, significant
daily-life mobility data may go uncaptured without multiple camera coverage
using ambient sensors.

An alternative approach is to use wearables sensors affixed to the user’s body.
There have been many successful research programs using IMUs to monitor phys-
ical (and sedentary) activity, identify activity types, estimate full body pose, and
measure gait parameters [29, 22, 8, 17, 21]. Body-worn IMUs have demonstrated
excellent capabilities to measure temporal gait parameters. However, a critical
drawback associated with the use of IMUs is inaccurate estimation of key spatial
parameters. In particular, step width is linked to gait stability and have a strong
association to fall risk [6, 27]. This measurement limitation is largely attributed
to a relative lack of motion in the frontal plane during gait, resulting in small
IMU excitation and low signal-to-noise ratio.

Egocentric first-person video (FPV), acquired via body-worn cameras, may
outperform IMUs for the purpose of estimating spatial parameters of gait. Bear-
ing in mind a waist-worn camera pointed down and ahead of the user, FPV of-
fers a potentially stronger signal for spatial estimation, especially in the frontal
plane. For instance, a smartphone-based camera was mounted on the waist to
quantify gait characteristics in [25]. However, the system requires additional
markers on the feet. There are also secondary reasons for investigating FPV as
a sensing modality for gait assessment. Vision captures rich information on the
properties of the environment that influence mobility behaviour, including slope
changes (e.g., stairs, curbs, ramps) and surfaces (e.g., gravel, grass, concrete) [33,
32]. Furthermore, FPV offers the potential to reconstruct events by capturing
the immediate environmental context more readily than IMU-based data alone.
Without detailed information of the mobility context, such as the presence of
other pedestrians, terrain characteristics, and obstacles, the ability to interpret
ambulatory gait data is constrained. For example, FPV recordings have been
used for the purpose of validation of other IMU-based algorithms [46, 17] by
manually viewing video frames and identifying specific events.
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To address the problem of ambulatory measurement of spatial gait param-
eters, this paper tackles the initial problem of localizing feet in FPV frames in
2D coordinates of video captured from a belt-mounted camera. In comparison
to head- and chest-mounted camera views, we hypothesized that a waist-level
view would offer the best view for 3 reasons. First, waist-level FPV offers a
consistent view of the legs and feet even when turning. In contrast, head- or
chest-mounted views tend to rotate in anticipation of turns or changes in at-
tention, which reduces the available views of the feet. Second, a waist-level view
affords greater resolution of the feet than views higher on the body. Finally, cam-
era egomotion is hypothesized to provide a rich source of temporal information
to segment body parts [28]. We propose a method to generate pixel-wise foot
placement outputs towards the eventual goal of estimating spatial parameters
(e.g., step width). The transformation between pixel outputs to distances, likely
using 2D metrology approaches, is beyond the scope of the current study and
will be examined in subsequent works. To achieve the foot localization solution,
we propose a FPV-based deep hybrid architecture called the FootChaser model
(see Fig. 3). The models comprise of a) the FootRegionProposer model, which
uses a ConvNet to propose high confidence feet regions (or bounding boxes),
and b) the LocomoNet, which examines the temporal dynamics of the proposed
regions to refine the FootRegionProposer output by filtering the false positives
to locate feet. An evaluation of the proposed method to accurately localize feet
is reported and discussed.

1.1 Related work

While there have been TPV-based research efforts utilizing smartphone or am-
bient camera video to assess gait (e.g., [36, 14, 10]) and estimate pose (e.g., [15,
9, 20, 50, 12]), the challenges and signals associated with FPV are distinct. There
are several factors that challenge the proposed concept: 1) occlusion or extreme
illumination conditions, 2) similar objects/terrain patterns to the feet (e.g., other
people’s feet), and 3) motion blur from fast movements. In this section, we fo-
cus on reviewing previous efforts using FPV to address these challenges and to
inform our chosen methodologies, i.e. camera type and location.

There are relatively few previous works aiming to extract spatial gait param-
eters using FPV. An interesting and novel approach was using a walker-mounted
depth and/or color camera to estimate 3D pose of lower limbs, mainly in frontal
plane [35, 18, 31]. To achieve this, Ng et al. [31] used general appearance model
(texture and colour cues) within a Bayesian probabilistic framework. In [18], a
Kinect (depth) sensor along with two RGB cameras were placed on a moving
walker, and the 3D pose was formulated as a particle filtering problem with a
hidden Markov model. The key limitation of these works is the dependency on
a stable platform (i.e., walker) to afford consistent views of the lower limbs and
monitor pose over time, which is not generalizable to individuals that do not
require a walking aid for ambulations.

The possibility of using one or several body-mounted cameras is investi-
gated for 3D full body [43, 24, 51] and upper limb (arms and hands) [40, 30] pose
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estimation. In [43, 24], outward-looking body-mounted cameras along with op-
timization approaches were used to estimate 3D body pose. In [43] more than
ten cameras were attached to all the person’s joints, and structure from mo-
tion approach was used to localize the cameras, estimate the joint angles and
reconstruct human motion. The main limitation of the proposed method is the
obtrusive multi-camera setup and intensive computational load required to infer
pose in a video sequence. To alleviate the main weaknesses of [43], Jiang et al.
[24] developed a model based on synchronized egocentric videos captured by a
chest-mounted camera and a Kinect sensor. The 3D body pose model employs
camera egomotion and contextual cues to infer body pose, without direct views
of the key body parts (i.e., legs, feet) desired for gait assessment. Moreover, the
videos were restricted to relatively static activities (i.e., sitting, standing). Such
restrictions and the failure to examine more complex (i.e., dynamic) scenarios
limits the applicability is the important limitation of of their approach to the
gait assessment problem.

In contrast to the previous studies, [39] and [51] utilized body-related visual
cues (outside-in/top-down view) provided by fisheye cameras attached to a bike
helmet and baseball cap, respectively. In [51], a ConvNet for 3D body pose esti-
mation was developed to address limitations in its former version [39], including
dependency on 3D actor model initialization and inability to run in real-time.
Although the authors compensated for the distortion imposed by the fisheye
lens, estimation of the lower body 2D heatmaps (ankles, knees, hip, and toes)
was less accurate due to the strong perspective distortion (i.e., a large upper
body and small lower body).

The closest approach in spirit to the proposed approach is a hybrid method
which combines both global object appearance (spatial network) and motion
patterns (temporal network) in a two-stream ConvNets structure. This approach
was inspired by Simonyan and Zisserman [44], in which a ConvNet was trained
by stacks of optical flow for the task of TPV-based activity recognition. Simi-
lar architecture is also employed in FPV-based methods to recognize different
activities [28, 45]. To capture long-term sequential information from FPV data,
recurrent neural network/long-short term memory (LSTM) was used by Abebe
et al. [2, 1] where stacked spectrograms generated over temporal windows from
mean grid-optical-flow vectors were used to represent motion [45].

Modeling temporal information in a specific regions enclosed by bounding
boxes in consecutive frames is investigated in some TPV-based studies [7, 47]. In
[23] an object-centric motion compensation scheme was implemented by training
CNNs as regressors to estimate the shift of the person from the center of the
bounding box. These shifts were further applied to the image stack (a rectified
spatiotemporal volume) so that the subject remains centered. More related to our
LocomoNet approach is the work by Brattoli et al. [7], in which a fully connected
network was trained to analyze the grasping behavior of rats over time. Based
on optical flow data of both initial positives (paw regions) and random negatives
cropped from other regions, temporal representation was learned to detect paws.
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(a) 0%: Right heel Strike (RHS)        (b)  30%: Left Heel Rise                            (c)                  (d) 50%: Left heel Strike (LHS)                   (e)
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Fig. 1. Egocentric camera-based gait assessment overview. Panels a,b,c,d,e represent
different phases of gait captured by a belt-mounted camera. The x and y location
of the right foot (red bounding boxes) and left foot (green boxes) over consecutive
frames (XCoM: extrapolated center of mass). Rows f and g depict lateral sidestep
and lateral crossover compensatory balance reactions, respectively. These reactions are
important behaviours related to fall risk. Note the transformation between pixel-wise
box coordinates to distances is not covered in the current study.

2 The FootChaser framework

In this section, we describe the framework for proposing high confidence regions
by incorporating both temporal and spatial data, for the task of gait assessment.
As an alternative to inferring gait parameters from 3D pose estimates, we hy-
pothesized that tracking the centers of the person’s feet in 2D plane of walking
over time could provide accurate spatial estimates. The scope of this paper is to
first detect the feet, and examine the transformation between camera coordinates
to spatial locations in subsequent efforts.

Let Ii be the ith frame in a video sequence with the length N , captured
by a belt-mounted camera with an outside-in top-down view (i = {1, 2 · · ·N}).
The manually annotated ground truth (GT ) data is in the form of bounding
boxes GTf,i = [xGT

f,i , y
GT
f,i , w

GT
f,i , h

GT
f,i ] indicating the camera wearer’s feet (f =

{left, right}) in 2D 1080 × 1920 coordinate system of each frame (see Fig. 1).
x and y denote the center (CGT

f,i ), and w and h represent the width and height
of the bounding box(es) respectively (see Fig. 2). The goal of the FootChaser
framework is to detect and localize the centers of each foot (if present in the
frame) in the form Pf,i = [xPf,i, y

P
f,i, w

P
f,i, h

P
f,i] during the gait. In an ideal case,

the error measure (E) will be minimized for x (E(xGT
f,i , x

P
f,i)) and y (E(yGT

f,i , y
P
f,i))

trajectories and the underlying area should be the same for the P s and GT s, i.e,
the intersection over union (IoU) measure will be maximized (IoU = 1). The
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predicted x (≈ frontal axis) and y (≈ sagittal axis) trajectories can be used to
estimate pixel-wise step width and step length gait parameters, respectively.

To investigate the feasibility of pixel-wise step-by-step gait parameter ex-
traction, the xGT

left, x
GT
right data are plotted in Fig. 2. While yGT

left and yGT
right were

examined for measurement of step length, we focus on step width estimation in
the current study. We observed that (a) the trajectories roughly resemble the
center of pressure (CoP) data captured by forceplates, (b) the local maxima
and minimuma seem to be correlated with right heel strike (RHSs) and left heel
strike (LHSs), respectively (further investigation is required using gold-standard
gait analysis methods, e.g., Vicon), and (c) GT data can be divided into frames
with one foot (GT −One), and both feet (GT − Two).

In most of the GT−Two frames, a small portion of the trailing foot is observ-
able (see Fig. 1), and is irrelevant for extraction of gait parameters. Considering
shape distortions affect detection results, we hypothesized that the ConvNet is
more likely to detect the other foot rather than the less-visible one similar to
the findings of Huang et al. [19] and Rozamtsev et al. [41]. In other words, in
the frames with two GT, the network often locates the center of the foot that is
required for the extraction of gait parameters.

Considering these cues, we surmised that tracking each foot separately is
unnecessary and frames with only one predicted foot center can be used to
extract step width. Specifically, (CP−one

i ) obtained from the FootChaser (P −
One = [xP−one

i , yP−one
i , wP−one

i , hP−one
i ]), regardless of the foot type f . As the

key signals for the calculation of spatiotemporal gait parameters (e.g., LHS and
RHS points), these can be observed from the xP−one and yP−one trajectories.

To achieve feet localization, we propose a two-stage FootChaser framework
comprised of two ConvNets: 1) FootRegionProposer and 2) LocomoNet. The
FootRegionProposer proposes n ∈ N bounding boxes as ’proposed foot regions’,
or PFRj,i, j = {1,..., n} in the ith frame. As there may be several false positives
in the proposed regions, we hypothesized that the FootRegionProposer results
may be boosted by applying another ConvNet, called LocomoNet, trained to be
sensitive to the periodic/specific movement patterns embedded in the user’s feet
regions during gait. In other words, the LocomoNet is expected to filter out false
positives by selecting the most confident regions. After applying the LocomoNet
on PFRj,i, only the frames with a single PFR are used for step width estimation
(see Fig. 2).

2.1 FootRegionProposer

The FootRegionProposer is a ConvNet fine-tuned to propose PFRs in a
frame. The jth proposed region is in the form of a bounding box PFRj,i =
[xj,i, yj,i, wj,i, hj,i], where xj,i, yj,i, wj,i, and hj,i denote the center coordinates,
and width and height of the box, respectively (see sample PFRs marked by red
rectangles in Fig. 3). The training procedure for the LocomoNet is discussed in
subsection 3.2. As noted above, there are several factors that may challenge the
performance of the FootRegionProposer: 1) occlusion or extreme illumination
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Fig. 2. Sample bounding box X-coordinate time series data from dataset 2. Ground
Truth (GT) data for left (green) and right (red) feet, and FootChaser predictions with
1 identified region (blue). The expected x location of left heel strike (LHS) and right
heel strike (RHS) are marked (further investigation is required using gold-standard gait
analysis methods, e.g., Vicon). Periods with 2 identified feet (GT-Two) are indicated
by dotted boxes.

conditions can increase the number of false negatives, 2) objects or terrain simi-
lar to the feet (i.e., noise, see Fig. 4-c), and 3) motion blur from fast movements.
In addition to incorporating a fast and precise object localization/detection Con-
vNet (e.g., faster R-CNN [38], or YOLO [37]), a second ConvNet was applied to
the FootRegionProposer output to filter false PFRs (subsection 2.2).

2.2 LocomoNet: Learning from gait patterns

To reduce the number of proposed false positives (i.e., false PFRs) by FootRe-
gionProposer Network (towards the goal of ’one’ true PFR), the dynamic tempo-
ral structure of the PFRj,i will be further examined by the proposed LocomoNet
ConvNet. Inspired by Simonyan and Zisserman’s work [44], we consider exam-
ining optical flow features to deliver bounding boxes with higher confidence of
representing feet.

The horizontal U = {U1, U2, ..., UN−1} and vertical optical flow V =
{V1, V2,..., VN−1} can be calculated separately for each two consecutive frames
in the video sequence (the height and width of the U and V compo-
nents are equal to the frame’s 2D dimension, i.e., 1080 × 1920). Consider-
ing a fixed length of L consecutive frames, the optical flow volume OFVi =
{Ui−L/2, Vi−L/2,..., Ui+L/2−1, Vi+L/2−1} is obtained for the ith frame. In order to
represent the temporal information of PFRj,i, a fixed (Wc×Hc) region centered
at (xj,i, yj,i) is cropped from OFVi, which ends up to a (2L×Wc ×Hc) volume
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Fig. 3. The FootChaser framework. First, the FootRegionProposer proposes n ∈ N
PFRj,i bounding boxes (red boxes), j = {1,2,..., n}) in the ith frame. Multiple regions
proposed are examined by LocomoNet to filter out false positives. After obtaining the
stacks of optical flow volume OFVi (V and U are vertical and horizontal 2D flow
components) from the [i − L/2, i + L/2 − 1] frames (L denotes the depth/length of
stack), LocomoNet inputs are obtained by cropping fixed size regions centered at the
center of each PFRj,i, i.e., (xj,i, yj,i), which creates the optical flow volumes from PFRs
(OFV −PFRj.i). Final FootChaser outputs reflect frames with a single proposed region
((CP−one

i ).

of interest (OFV −PFRj,i) corresponding to that proposal (see Fig. 3). Each of
these volumes are fed into the LocomoNet for filtering. The training procedure
for LocomoNet is discussed in subsection 3.3. After applying the LocomoNet, if
the output frame has only one remaining FPR, the center of that PFRj,i will be
saved in the center vector (CP−One

i ). Otherwise, the corresponding component
will be replaced by NaN and will not be considered in the evaluation.

3 Experiments

3.1 Dataset

Sufficiently large datasets are challenging to collect, often the primary bottleneck
for deep learning. However, there are no publicly available datasets specific to
our needs, i.e., large dataset captured by a belt-mounted camera including the
images/videos of feet from different people with a considerable diversity in ap-
pearance (e.g., shoes with different colors, shape, barefoot, socks) and movement
(i.e., gait). To facilitate training, we decided to fine-tune [34] the ConvNet based
on real images with normal optics from large scale datasets, which also boosts
the generalizability of the network. We fine-tuned the ConvNet on Footwear
(footgear) subcategory images (≈ 1300 images with bounding boxes, and 446
images of shoes from top-down view with and without bounding boxes, and we
added the bounding boxes manually) from the ImageNet 2011 [42] dataset. Such
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                         (a)                                  (b)                                   (c)                                   (d)                                   (e)

Fig. 4. Sample frames reflecting high inter- and intra-class variability in terms of: 1)
intense illuminations conditions and shadows (row 1-a,b), 2) different phases of gait,
3) different walking surfaces, e.g., color, texture (each column corresponds to a specific
environment and walking surface), and 4) motion blur during crossover and side-step
compensatory reactions (row 3-a,b).

images resemble more realistic appearance of one’s footwear from different views
(compared to alternatives such as UT-Zap50K [52]).

In our dataset, 3 healthy young participants (researchers affiliated with the
Neural and Rehabilitation Engineering and Computational Health Informatics
Labs, at the University of Waterloo) participated in our data collection pro-
cedure. The FPV data was collected, using a GoPro Hero 5 Session camera
centered on participants’ belt (30fps, 1080×1920), with no specific calibration
and setup. A wearable IMU was attached as closely as possible to the cam-
era to collect movement signals (for future experiments). Overall, 5 datasets
(including 2 separate datasets from 2 participants in different environments)
were captured in five different indoor (tiles, carpet) and outdoor environments
(bricks, grass/muddy) around the University of Waterloo campus, resulting in
4505 (= 5×N,N = 901) total frames (Fig. 4 shows samples from the dataset).
Frames were annotated by drawing bounding boxes around the right and left
shoes (in PASCAL VOC format), using the LabelImg tool [48].

In addition to the normal walking sequences, in two datasets, simulated com-
pensatory balance reactions (CBRs: lateral sidestep, crossover stepping) during
gait were also collected (see Fig. 4-row 3 columns a,b for sets 1 and 2, and the
GT plot for dataset 2 in Fig. 6). CBRs (near falls) are reactions to recover stabil-
ity following a loss of balance (see Fig. 1-panels f and g), characterized by rapid
step movements (or reaching) to widen the base of support. CBRs also introduce
more challenge to our dataset as the corresponding FPV data is usually blurry
(i.e., fast foot displacement) (see Fig. 4) and the field of view may be occluded.

3.2 FootRegionProposer Training

There are several models that can be taken into account for FootRegionProposer,
including SSD (Single Shot MultiBox Detector) [26], faster R-CNN [38], R-FCN
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[11]. In [19], it is shown that SSD models typically have (very) poor performance
on small objects, e.g. the relatively small feet regions in our experimenrs. Among
related approaches, YOLO [37] shows state-of-the-art results in terms of speed
and accuracy.

To implement the FootRegionProposer, the original YOLO version 2 from the
Darknet deep learning framework was used [37]. The pre-trained weights on the
large-scale ImageNet dataset were used for network initialization, which was then
fine-tuned on ImageNet shoe sub-category. The ConvNet was further fine-tuned
on images of shoes that are captured in realistic scenes from a top-down view.
All of the network inputs were resized to K × 3× 832× 832, where K = 64 was
the batch size (mini-batch size: 32). Moreover, the stochastic gradient descent
with momentum was used as optimization method, with an initial learning rate
of γ = 0.001, momentum: 0.9, and decay rate of 0.0005 (at steps 100 and 25000)
selected using a Nvidia Titan X GPU. To further address the problem of limited
data, the data was augmented (i.e., random crops and rotation) to improve the
generalization of the network.

3.3 LocomoNet training

Although YOLO is very fast, it often suffers from a high number of false positives.
The goal of the LocomoNet is to improve FootChaser performance by reducing
the number of false proposals. The LocomoNet output maps each OFV to one of
the two possible classes. Similar to [45, 28, 49], the TVL1 optical flow algorithm
[53] is chosen, here with OpenCV GPU implementation. Moreover, similar to
[44, 49, 28], the stack length of L = 10 (i.e., 20 input modality channels for
LocomoNet) is selected, and crop size is set to Wc = Hc = 224.

Based on our experiments, a 224×224 region and the stack length of L = 10
provided sufficient temporal information for foot regions during gait. Moreover,
we handled off-the-frame crops by shifting the 224 × 224 box in the opposite
direction in place of resizing to retain the aspect ratio. To train the LocomoNet,
300 positive (shoe/foot regions) volumes were extracted for left and right feet in
each of the 5 datasets, resulting in a total of 3000 (=2 × 300 × 5) true positive
volumes. An equal number of negative volumes (i.e. 3000) were also randomly
cropped from the non-shoe regions from the consecutive frames, with a constraint
of IoU ≈ 0 with the shoe regions at the ith frame, the past and next frames in
the volume were not constrained to allow for a more realistic evaluation.

The approach proposed in [49], where the authors demonstrated the possi-
bility of pre-training temporal nets with ImageNet model, was applied in the
current study. After extracting optical flow fields and discretizing the fields into
[0, 255], the authors averaged the ImageNet model filters of first layer across the
channel to account for the difference in input channel number for temporal and
spatial nets (20 vs. 3), then copied the average results 20 times as the initial-
ization of temporal nets. Considering such an approach, a motion stream Con-
vNet (ResNet-101 [16] architecture) pre-trained on video information in UCF101
dataset was used, with stochastic gradient descent and cross entropy loss. Batch
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(a)                                           (b)                                          (c)
Fig. 5. Example FootRegionProposer results (PFRs) for three frames marked by red
boxes. Correct foot regions were identified by the FootRegionProposer; however, false
positives were also proposed. After applying the LocomoNet, some false positives were
filtered out (marked with (×)). In (a) and (c) false positive(s) are successfully removed,
(b) shows a case of intense illumination and shadows challenging LocomoNet, resulting
two false positives that were not filtered out.

size, initial learning rate, and momentum were set to K = 64, 0.01, and 0.9,
respectively.

3.4 Evaluation

1) Model generalizability. To evaluate the extent to which subject-related
movement patterns in different environments can be handled by LocomoNet, a
leave-one-dataset-out (LODO) cross-validation was performed. To achieve this,
a LocomoNetND

(ND = {1, 2,...5}) model was trained using the whole dataset
except ND dataset (i.e., 4800 volumes for training) and tested on the dataset
ND (i.e., 1200 volumes for testing), and repeated 5 times. The following LODO
accuracies were obtained for our 5 datasets: 1: 92.41%, 2: 91.16%, 3: 98.33%,
4: 83.83%, and 5: 96.25%. The high accuracies indicate the generalizability of
LocomoNet to discriminate foot-related OFV − PFR in unseen datasets. The
following average IoU scores were obtained for each set: 1: 0.7626, 2: 0.7304, 3:
0.3794, 4: 0.7155, and 5: 0.5235. Considering an IoU threshold of 0.5 is typically
used in object detection evaluation to determine whether detection is positive
(IoU of true positive> 0.5) [13], we interpret that the generalizability of the
model except for ND = 3, is satisfactory. We attributed the lower performance
of the network on dataset 3 to the patterns of walking surface (tiles with different
sizes, see Fig. 4-c).

2) The number of proposed regions with IoU < 0.2 (false positives)
dramatically reduced after applying the LocomoNet on FPRs. To assess
the false positive removal performance of the LocomoNetND

, we define a elim-
ination rate metric as ERND

= Number of filtered PFRs in a specific IoU interval
Total number of PFRs in a specific IoU interval × 100,

(IoU=Area(GT ∩ P )/Area(GT ∪ P )). As shown in Table 1, the PFRs in a low
IoU score range (∈ [0, 0.2)), representing false positives, were removed with a
high rate (e.g., in IoU[0,0.1) with 83.25% reduction). The relatively low true pos-
itive removal score (i.e., in IoU[0.9,1) with 8.09% reduction) reflects satisfactory
performance of LocomoNet in retaining the true positives (refer to Fig. 2 for
some failure and success cases).
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Table 1. Number of proposed foot regions (NPFR,ND ) and elimination rate (ER) in
different intersection-over-union (IoU) intervals indicating LocomoNet ability to re-
move false positives by dataset. NPFR,ND dramatically reduced after applying the
LocomoNet. ERT is the weighted average of elimination rate, IoU > 0.5 and < 0.5,
representing the true and false positives, respectively [13].)

IoU

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
NPFR,1 1219 36 7 4 11 22 114 218 312 110
NPFR,2 654 10 2 3 10 26 122 282 277 76
NPFR,3 781 0 4 12 13 35 89 156 116 15
NPFR,4 1225 2 2 1 6 31 119 293 294 36
NPFR,5 229 18 17 27 55 106 188 195 83 10
NPFR,T− 4108 66 32 47 95 220 632 1144 1082 247
ER1 73.83 55.55 42.85 0.00 0.00 4.54 4.38 8.25 7.05 1.81
ER2 92.20 100.00 0.00 0.00 10 11.53 13.11 17.37 13.35 10.52
ER3 97.18 100.00 0.00 8.33 7.69 5.71 0.00 1.28 3.44 6.66
ER4 83.91 50.00 100 100.00 16.66 35.48 31.93 27.30 26.87 19.44
ER5 83.40 77.77 0.00 0.00 0.00 0.00 3.72 4.61 8.43 20.00
ERT 83.25 68.18 15.62 2.14 3.15 7.72 9.82 13.81 13.77 8.09

Table 2. Mean absolute error (MAE) results for the GT−One region in absolute pixels
and as a fraction of image resolution. MAE = 1/N

∑
|GT − Onea,f,i − P − Onea,i|,

where a = {x, y}, f = {left, right}, N = length(GT −One). MAE/R as a fraction of
image resolution, where (R): Rx=1920, Ry = 1080.

MAE (pixel) MAE/R

Dataset xLeft xRight yLeft yRight xLeft xRight yLeft yRight

D1 41.68 87.50 55.66 54.81 0.021 0.045 0.051 0.050
D2 32.90 44.00 54.29 55.94 0.017 0.022 0.050 0.051
D3 125.74 194.85 75.19 154.46 0.065 0.101 0.069 0.143
D4 64.40 62.57 76.11 74.11 0.059 0.070 0.057 0.068
D5 99.31 37.68 101.52 92.04 0.051 0.019 0.094 0.085

Table 3. Mean absolute error (MAE) for GT − Two regions in absolute pixels and as
a fraction of resolution (MAE/R), where (R:) Rx=1920, Ry = 1080..

MAE (pixel) MAE/R

Dataset x y x y
D1 58.11 84.00 0.030 0.077
D2 36.12 80.44 0.018 0.074
D3 121.47 117.78 0.063 0.109
D4 103.55 94.90 0.053 0.087
D5 25.28 101.52 0.013 0.094
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3) FootChaser prediction trajectories closely match ground truth
trajectories. The performance of the FootChaser in tracing the GT data can
be assessed by measuring 1) the individual IoU scores, and 2) the pixel-wise dis-
tance (error, E) between the predicted foot center and its corresponding point
in GT data, i.e. as discussed in section 2, by comparing the predicted P −One
bounding boxes with GT − one (E(aP−One, aGT−One), a = {x, y}), where mean
absolute error (MAE) is taken into account as the error metric E (see Table 2).
For GT − Two (e.g., the black dotted parts in Fig. 2), the performance was
evaluated by comparing the aP−One

i with the nearest GT point regardless of the
foot type (Table 3 displays the results). At first glance, this may appear to be a
weak metric. However, as discussed in section 2 and depicted in Fig. 6 and 2, in
GT − Two data the FootChaser is biased toward proposing regions correspond-
ing to the nearly-full-view feet (rather than partially-observable ones). In this
application, the observed bias to larger objects is a strength as it predicts the
center of the foot required for the extraction of spatiotemporal gait parameters.
This can be attributed to the fact that the FootRegionProposer is trained on
ImageNet dataset that mainly includes the full-view images of feet. Moreover,
this is in line with the findings of [41, 19], where a higher performance was re-
ported for the detection of bigger objects in videos. Considering these points,
the error criteria for GT − Two regions seem to be a satisfactory representation
of performance.

In addition to the relatively low error rates (< 10% for the x trajectories),
as presented in Fig. 6, the framework also predicted many of the points at the
timings of CBRs (spikes). Therefore, these trajectories can be a promising avenue
for the detection of CBRs. High E values for D3 (Tables 2 and 3) also support
the low IoU rate achieved for that dataset (due to the patterns of the walking
surface).

4 Conclusion and future work

As the main contribution, this study addressed the potential of incorporating
a body-mounted camera to develop automated markerless algorithms to assess
gait in natural environments. This advances our long-term objective to develop
novel markerless models to extract spatiotemporal gait parameters, particularly
step width, to complement existing IMU-based methods.

As the next steps, we aim to: 1) collect synchronized criterion (gold) standard
human movement data using motion capture (e.g., Vicon) or gait analysis tools
(e.g., pressure-sensitive mat, GaitRite) synchronized to FPV data and develop
a model to directly extract spatiotempral gait parameters from FPV data and
convert the pixel-wise results of the FootChaser into the commonly-used distance
units (e.g., m or cm) and directly extract spatiotemporal gait parameters, and 2)
develop a more robust version of FootChaser framework by collecting a large free-
living FPV+IMU dataset from older adults with different frailty levels, annotate
the data, and make the dataset publicly available.
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left
P-One

Compensatory balance 
reactions (CBRs)

right

Fig. 6. Time series plot of X coordinate center of the most confident proposed foot
regions (PFR, blue) predicted by the FootChaser framework for dataset 2. Ground
truth (GT) for the left and right feet are plotted in green and red, respectively. Spikes
represent compensatory balance reactions (CBRs) performed by the participant.

This paper contributes an advance in the field of ambulatory gait assess-
ment to localize feet in a waist-mounted FPV feed towards a fully automatic
system to detect abnormalities (e.g., compensatory balance reactions, or near-
falls), identify environmental hazards (e.g., slope changes, stairs, curbs, ramps)
and surfaces (e.g., gravel, grass, concrete) that influence mobility and potential
risk to falls. As described earlier, FPV data also provides objective evidence on
cause and circumstances of perturbed balance during activities of daily living,
Our future studies will examine the potential for automatic detection of these
environmental fall risk hazards [32, 33].

Given massive amounts of unlabeled FPV data collected during longer-term
study, we aim to develop approaches that can robustly handle significant
diversity in movement patterns (e.g., rhythm, speed), different populations
(e.g., older fallers, Alzheimer’s disease), and varying clothing and footwear
appearance. To address these aspects, similar to [9], we aim to personalize both
of the FootRegionProposer and LocomoNet ConvNets to introduce an adaptive
pipeline ”AdaFootChaser” in our future work.
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