Abstract
Co-authorship networks contain invisible patterns of collaboration among researchers. The process of writing joint paper can depend of different factors, such as friendship, common interests, and policy of university. We show that, having a temporal co-authorship network, it is possible to predict future publications. We solve the problem of recommending collaborators from the point of link prediction using graph embedding, obtained from co-authorship network. We run experiments on data from HSE publications graph and compare it with relevant models.
I. Makarov—The work was supported by the Russian Science Foundation under grant 17-11-01294 and performed at National Research University Higher School of Economics, Russia.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, C., Blei, D.M.: Collaborative topic modeling for recommending scientific articles. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 448–456. ACM (2011)
Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: Proceedings of the 31st International Conference on Machine Learning (ICML-2014), pp. 1188–1196 (2014)
Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 855–864. ACM, New York (2016)
Wu, H., Lerman, K.: Network vector: distributed representations of networks with global context. arXiv preprint arXiv:1709.02448 (2017)
Mimno, D., McCallum, A.: Expertise modeling for matching papers with reviewers. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 500–509. ACM (2007)
Makarov, I., Bulanov, O., Zhukov, L.E.: Co-author recommender system. In: Kalyagin, V., Nikolaev, A., Pardalos, P., Prokopyev, O. (eds.) Models Algorithms and Technologies for Network Analysis. Springer Proceedings in Mathematics and Statistic. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56829-4_18
Makarov, I., Bulanov, O., Gerasimova, O., Meshcheryakova, N., Karpov, I., Zhukov, L.E.: Scientific matchmaker: collaborator recommender system. In: van der Aalst, W.M.P., et al. (eds.) AIST 2017. LNCS, vol. 10716, pp. 404–410. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73013-4_37
Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Assoc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Makarov, I., Gerasimova, O., Sulimov, P., Zhukov, L.E. (2018). Co-authorship Network Embedding and Recommending Collaborators via Network Embedding. In: van der Aalst, W., et al. Analysis of Images, Social Networks and Texts. AIST 2018. Lecture Notes in Computer Science(), vol 11179. Springer, Cham. https://doi.org/10.1007/978-3-030-11027-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-11027-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11026-0
Online ISBN: 978-3-030-11027-7
eBook Packages: Computer ScienceComputer Science (R0)