Skip to main content

How Perceived Real-World Danger Affects Virtual Reality Experiences

  • Conference paper
  • First Online:
Intelligent Human Systems Integration 2019 (IHSI 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 903))

Included in the following conference series:

  • 2917 Accesses

Abstract

Since current VR system blocks user’s view (vision) of the real world as well as all the wires and physical objects around him/her, major VR manufactures such as HTC suggest securing a large space before experiencing the immersive virtual environment. There are possibilities that these “potential danger” elements could induce a negative effect on their virtual reality experiences. Exploring a relationship between user’s percieved danger of the real world and immersion in the virtual reality is the main topic of this paper. In particular, we wanted to see the level of perceived danger when a user in the immersive virtual environment encountered a dangerous situation from the objects in the “real world”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilde, T.: Man dies in VR accident, reports Russian news agency. Pcgamer (2017). https://www.pcgamer.com/man-dies-in-vr-accident-according-to-russian-news-agency/

  2. Kuchera, B.: This is the VR game that’s hurting players, and they love it, polygon (2016). https://www.polygon.com/2016/4/11/11364904/htc-vive-selfie-tennis-injury-hands-ceilings

  3. Biocca, F., Delaney, B.: Immersive virtual reality technology. Lawrence Erlbaum Associates, Inc., Hillsdale (1995)

    Google Scholar 

  4. Marketsandmarkets.com. Virtual reality market by component (hardware and software), technology (non-immersive, semi- & fully immersive), device type (head-mounted display, gesture control device), application and geography - global forecast to 2022 (Report Code: SE 3528) (2016)

    Google Scholar 

  5. Amasya, A., Solak, E., Erdem, G.: A content analysis of virtual reality studies in foreign language education. participatory educational research. spi15(2), 21–26. https://doi.org/10.17275/per.15.spi.2.3 (2015a)

  6. Slater, M.: Place illusion and plausibility can lead to realistic behavior in immersive virtual environments. Philos. Trans. Royal Soc. B: Biol. Sci. 364(1535), 3549–3557 (2009). https://doi.org/10.1098/rstb.2009.0138(2009

    Article  Google Scholar 

  7. Ghosh, S., et al.: NotifiVR: exploring interruptions and notifications in virtual reality. IEEE Trans. Vis. Comput. Graph. 24(4), 1447–1456 (2018). https://doi.org/10.1109/TVCG.2018.2793698

    Article  Google Scholar 

  8. Gonçalves, R., Pedrozo, A.L., Coutinho, E.S.F., Figueira, I., Ventura, P.: Efficacy of virtual reality exposure therapy in the treatment of PTSD: a systematic review. PLoS ONE 7(12), e48469 (2012). https://doi.org/10.1371/journal.pone.0048469

    Article  Google Scholar 

  9. LaMotte, S.: The very real health dangers of virtual reality CNN (2017). https://www.cnn.com/2017/12/13/health/virtual-reality-vr-dangers-safety/index.html

  10. Suma, E.A., Krum, D.M.: Impossible spaces: maximizing natural walking in virtual environments with self-overlapping architecture. IEEE Trans. Vis. Comput. Graph. 18(4), 10 (2012)

    Article  Google Scholar 

  11. Adalberto, L., Simeone, E.V., Hans G.: Substitutional reality: using the physical environment to design virtual reality experiences. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI 2015), pp. 3307–3316. ACM, New York (2015). https://doi.org/10.1145/2702123.2702389

  12. Shapira, L., Freedman, D.: Reality skins: creating immersive and tactile virtual environments. In: 2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 115–124, Merida (2016)

    Google Scholar 

  13. Steuer, J.: Defining virtual reality: dimensions determining telepresence. J. Commun. 42(4), 73–93 (1992). https://doi.org/10.1111/j.1460-2466.1992.tb00812.x

    Article  Google Scholar 

  14. Pan, X., Hamilton, A.F.C.: Understanding dual realities and more in VR. Br. J. Psychol. (2018). https://doi.org/10.1111/bjop.12315

  15. Slater, M.: Immersion and the illusion of presence in virtual reality. Br. J. Psychol. 109, 431–433 (2018). https://doi.org/10.1111/bjop.12305

    Article  Google Scholar 

  16. Oh, C.S., Bailenson, J.N., Welch, G.F.: A systematic review of social presence: definition, antecedents, and implications. Front. Robot. AI 5, 114 (2018). https://doi.org/10.3389/frobt.2018.00114

    Article  Google Scholar 

  17. Slater, M., Wilbur, S.: A framework for immersive virtual environments (FIVE): speculations on the role of presence in virtual environments. Presence – Teleoper. Virtual Environ. 6(6), 603–616 (1997)

    Article  Google Scholar 

  18. Hou, J., Nam, Y., Peng, W., et al.: Effects of screen size, viewing angle, and players’ immersion tendencies on game experience. Comput. Hum. Behav. 28, 617–623 (2012)

    Article  Google Scholar 

  19. Shin, D.: Do users experience real sociability through Social TV? J. Broadcast. Electron. Media 60(1), 140–159 (2016)

    Article  Google Scholar 

  20. Shin, D., Biocca, F.: Exploring immersive experience in journalism. New Media Soc. 20(8), 2800–2823 (2018). https://doi.org/10.1177/1461444817733133

    Article  Google Scholar 

  21. Sanchez-Vives, M.V., Slater, M.: From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 6, 332 (2005)

    Article  Google Scholar 

  22. McMahan, A.: Immersion, Engagement, and Presence, 20 (2003)

    Google Scholar 

  23. Lang, A.: The limited capacity model of mediated message processing. J. Commun. 50, 46–70 (2000). https://doi.org/10.1111/j.1460-2466.2000.tb02833.x

    Article  Google Scholar 

  24. Singh, A., Uijtdewilligen, L., Twisk, J.W.R., van Mechelen, W., Chinapaw, M.J.M.: Physical activity and performance at schoola systematic review of the literature including a methodological quality assessment. Arch. Pediatr. Adolesc. Med. 166(1), 49–55 (2012). https://doi.org/10.1001/archpediatrics.2011.716

    Article  Google Scholar 

  25. Hoffman, H.G., Patterson, D.R., Seibel, E., Soltani, M., Jewett-Leahy, L., Sharar, S.R.: Virtual reality pain control during burn wound debridement in the hydro tank. Clin. J. Pain 24(4), 299–304 (2008)

    Article  Google Scholar 

  26. Chan, E.A., Chung, J.W., Wong, T.K., Lien, A.S., Yang, J.Y.: Application of a virtual reality prototype for pain relief of pediatric burn in Taiwan. J. Clin. Nurs. 16(4), 786–793 (2007)

    Article  Google Scholar 

  27. Maani, C.V., Hoffman, H.G., Morrow, M., Maiers, A., Gaylord, K., McGhee, L.L., et al.: Virtual reality pain control during burn wound debridement of combat-related burn injuries using robot-like arm mounted VR goggles. J. Trauma 71(1 Suppl), S125–130 (2011)

    Article  Google Scholar 

  28. Van Twillert, B., Bremer, M., Faber, A.W.: Computer-generated virtual reality to control pain and anxiety in pediatric and adult burn patients during wound dressing changes. J. Burn Care Res. 28(5), 694–702 (2007)

    Article  Google Scholar 

  29. Gold, J.I., Belmont, K.A., Thomas, D.A.: The neurobiology of virtual reality pain attenuation. CyberPsychol. Behav. 10(4), 536–544 (2007). https://doi.org/10.1089/cpb.2007.993

    Article  Google Scholar 

  30. Paek, H., Hove, T.: Risk perceptions and risk characteristics. Oxford Research Encyclopedia of Communication (2017). http://communication.oxfordre.com/view/10.1093/acrefore/9780190228613.001.0001/acrefore-9780190228613-e-283. Accessed 18 Nov 2018

  31. Slovic, P., Fischhoff, B., Lichtenstein, S.: Perceived risk: psychological factors and social implications. Proc. R. Soc. Lond. A 376, 17–34 (1981). https://doi.org/10.1098/rspa.1981.0073

    Article  Google Scholar 

  32. Fischhoff, B., Slovic, P., Lichtenstein, S., Read, S., Combs, B.: How safe is safe enough? A psychometric study of attitudes toward technological risks and benefits. Policy Sci. 9, 127–152 (1978). https://doi.org/10.1007/bf00143739

    Article  Google Scholar 

  33. Witmer, B.G., Singer, M.J.: Measuring presence in virtual environments: a presence questionnaire. Presence: Teleoper. Virtual Environ. 7(3), 225–240 (1998)

    Google Scholar 

  34. Govern, J.M., Marsch, L.A.: Development and validation of the situational self-awareness scale. Conscious. Cogn. 10(3), 366–378 (2001). https://doi.org/10.1006/ccog.2001.0506

    Article  Google Scholar 

  35. Kendzierski, D., DeCarlo, K.: Physical activity enjoyment scale two validation studies. J. Sport Exerc. Psychol. 13, 50–64 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyoung Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, S., Kim, G. (2019). How Perceived Real-World Danger Affects Virtual Reality Experiences. In: Karwowski, W., Ahram, T. (eds) Intelligent Human Systems Integration 2019. IHSI 2019. Advances in Intelligent Systems and Computing, vol 903. Springer, Cham. https://doi.org/10.1007/978-3-030-11051-2_30

Download citation

Publish with us

Policies and ethics