Skip to main content

VR Experience from Data Science Point of View: How to Measure Inter-subject Dependence in Visual Attention and Spatial Behavior

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 903))

Abstract

Any Virtual Reality (VR) immersive experience inherently allows its subjects to choose their own paths of visual attention and/or spatial behavior. If a VR designer employs any system of attentional cues, they might be interested in measuring the system’s effectiveness. Eye tracking (ET) time series data can be used as a visual attention trail and positional time series data can be used as spatial behavior trails. In this paper we are addressing the issue of measuring inter-subject dependence in visual attention and spatial behavior. We are arguing why recently developed distance correlation coefficient [1, 2] might be both a proper and convenient choice to either measure the inter-subject dependence or test for the inter-subject independence in visual and behavioral data recorded during a VR experience.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Szekely, G.J., Rizzo, M.L., Bakirov, N.K., Nail, K.: Measuring and testing dependence by correlation of distances. Ann. Stat. 35, 2769–2794 (2007)

    Article  MathSciNet  Google Scholar 

  2. Szekely, G.J., Rizzo, M.L.: Brownian distance covariance. Ann. Appl. Stat. 3, 1236–1265 (2009)

    Article  MathSciNet  Google Scholar 

  3. Lowood, H.E.: Virtual Reality (2018). https://www.britannica.com/technology/virtual-reality

  4. Sutherland, I.E.: A head-mounted three dimensional display. In: AFIPS Fall Joint computer Conference, pp. 757–764. ACM, New York (1968)

    Google Scholar 

  5. Fox, J., Arena, D., Bailenson, J.N.: Virtual reality: a survival guide for the social scientist. J. Media Psychol. Ger. 21, 95–113 (2009)

    Article  Google Scholar 

  6. Fisher, W.R.: Narration as a human communication paradigm: the case of public moral argument. Commun. Monogr. 51, 1–22 (1984)

    Article  Google Scholar 

  7. Aylett, R., Louchart, S.: Towards a narrative theory of virtual reality. Virtual Real. 7, 2–9 (2003)

    Article  Google Scholar 

  8. Godde, M., Gabler, F., Siegmund, D, Braun, A.: Cinematic narration in VR - rethinking film conventions for 360 Degrees. In: Chen, J., Fragomeni, G. (eds.) VAMR 2018. LNCS, vol. 10910, pp. 184–201. Springer, Cham (2018)

    Google Scholar 

  9. Duchowski, A.T.: Eye Tracking Methodology: Theory and Practice. Springer, Berlin (2007)

    MATH  Google Scholar 

  10. Clark, M.: A comparison of correlation measures. Technical report, University of Notre Dame (2013)

    Google Scholar 

  11. de Santos, S.S., Takahashi, D.Y., Nakata, A., Fujita, A.: A comparative study of statistical methods used to identify dependencies between gene expression signals. Brief. Bioinform. 15, 906–918 (2014)

    Article  Google Scholar 

  12. Davis, R.A., Matsui, M., Mikosch, T., Wan, P.: Applications of distance correlation to time series. Bernoulli 24, 3087–3116 (2018)

    Article  MathSciNet  Google Scholar 

  13. Szekely, G.J., Rizzo, M.L.: Energy statistics: a class of statistics based on distances. J. Stat. Plan. Infer. 143, 1249–1272 (2013)

    Article  MathSciNet  Google Scholar 

  14. Szekely, G.J., Rizzo, M.L.: The energy of data. Ann. Rev. Stat. Appl. 4, 447–479 (2017)

    Article  Google Scholar 

  15. Fan, Y., Lafaye de Micheaux, P., Penev, S., Salopek, D.: Multivariate nonparametric test of independence. J. Multivar. Anal. 153, 189–210 (2017)

    Article  MathSciNet  Google Scholar 

  16. Rizzo, M.L., Szekely G.J.: energy: E-statistics: multivariate inference via the energy of data. R package version 1.7-5 (2018). https://CRAN.R-project.org/package=energy

  17. Lafaye de Micheaux P., Bilodeau, M.: Software: R Package, IndependeceTests, Version 0.2 (2012). https://CRAN.R-project.org/package=IndependenceTests

  18. R Core Team: R: A Language and Environment for Statistical Computing, Vienna, Austria (2018). https://www.R-project.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel Kobylinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kobylinski, P., Pochwatko, G., Biele, C. (2019). VR Experience from Data Science Point of View: How to Measure Inter-subject Dependence in Visual Attention and Spatial Behavior. In: Karwowski, W., Ahram, T. (eds) Intelligent Human Systems Integration 2019. IHSI 2019. Advances in Intelligent Systems and Computing, vol 903. Springer, Cham. https://doi.org/10.1007/978-3-030-11051-2_60

Download citation

Publish with us

Policies and ethics