Skip to main content

Robots with Lights

  • Chapter
  • First Online:
Distributed Computing by Mobile Entities

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11340))

Abstract

The classic Look-Compute-Move model of oblivious robots has many strengths: algorithms designed for this model are inherently resistant to a large set of failures that can affect the memory of the robots and their communication capabilities.

However, modern technologies allow for cheap and reliable means of communication and memorization. This is especially true if relatively low performances are needed, such as very limited communication bandwidth or constant memory. A theoretical model that expands the classic Look-Compute-Move by adding a minimal ability to communicate and remember is the model of robots with lights. In this model each robot carries a luminous source that it can modify at every cycle. The robot decides the color of its light during its Compute phase, and the light assumes such a color at the beginning of the next Move phase. Other robots can see the color of this light during their Look phases. The light will remain unaltered until the robot that carries it decides to change its color.

Typically, the number of available colors is very limited, i.e., it is constant with respect to the number of robots in the system.

In this chapter we will discuss the hierarchy of \(\mathcal{F}{\textsc {sync}}\), \(\mathcal{S}{\textsc {sync}}\), and \(\mathcal{A}{\textsc {sync}}\) models when lights are present, we call this model \(\mathcal{LUMINOUS}\). Moreover, we will see how lights are applied to solve classic problems such as rendezvous and forming a sequence of patterns. Finally, we will see how lights have been exploited in models where the visibility of robots is limited by the presence of obstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that setting the light at the end of the compute phase is equivalent to set the light at the beginning of the move phase.

  2. 2.

    We say \(\mathcal{F}{\textsc {sync}}\) model as shorthand for the model of \(\mathcal{OBLOT}\) (or \(\mathcal{LUMINOUS}\)) robots with \(\mathcal{F}{\textsc {sync}}\) scheduler.

  3. 3.

    In a rigid model robots always reach the destination when performing the move. In a non-rigid model robots may be stopped before reaching the destination, however they travel of at least a fixed unknown \(\delta >0\).

  4. 4.

    The neighbors are the adjacent robots on the convex hull boundary.

References

  1. Aljohani, A., Sharma, G.: Complete visibility for mobile robots with lights tolerating a faulty robot. In: Proceedings of the 32nd IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPS Workshops), pp. 834–843 (2017)

    Google Scholar 

  2. Aljohani, A., Poudel, P., Sharma, G.: Fault-tolerant complete visibility for asynchronous robots with lights under one-axis agreement. In: Rahman, M.S., Sung, W.-K., Uehara, R. (eds.) WALCOM 2018. LNCS, vol. 10755, pp. 169–182. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75172-6_15

    Chapter  Google Scholar 

  3. Bhagat, S., Mukhopadhyaya, K.: Optimum algorithm for mutual visibility among asynchronous robots with lights. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 341–355. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69084-1_24

    Chapter  Google Scholar 

  4. Cord-Landwehr, A., et al.: A new approach for analyzing convergence algorithms for mobile robots. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 650–661. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22012-8_52

    Chapter  Google Scholar 

  5. Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane. Theor. Comput. Sci. 410, 81–499 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Das, S., Flocchini, P., Prencipe, G., Santoro, N.: Forming sequences of geometric patterns with oblivious mobile robots. In: Proceedings of the 7th International Conference on FUN with Algorithms (FUN), pp. 113–124 (2014)

    Google Scholar 

  7. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: The power of lights: synchronizing asynchronous robots using visible bits. In: 32nd IEEE International Conference on Distributed Computing Systems (ICDCS), pp. 506–515 (2012)

    Google Scholar 

  8. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Autonomous mobile robots with lights. Theor. Comput. Sci. 609, 171–184 (2016)

    Article  MathSciNet  Google Scholar 

  9. Das, S., Flocchini, P., Santoro, N., Yamashita, M.: Forming sequences of geometric patterns with oblivious mobile robots. Distrib. Comput. 28, 131–145 (2015)

    Article  MathSciNet  Google Scholar 

  10. D’Emidio, M., Frigoni, D., Navarra, A.: Synchronous robots vs asynchronous lights-enhanced robots on graphs. Electron Notes Theor. Comput. Sci. 322, 169–180 (2016)

    Article  MathSciNet  Google Scholar 

  11. Di Luna, G.A., Flocchini, P., Gan Chaudhuri, S., Poloni, F., Santoro, N., Viglietta, G.: Mutual visibility by luminous robots without collisions. Inf. Comput. 254, 392–418 (2017)

    Article  MathSciNet  Google Scholar 

  12. Di Luna, G.A., Flocchini, P., Gan Chaudhuri, S., Santoro, N., Viglietta, G.: Robots with lights: overcoming obstructed visibility without colliding. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 150–164. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11764-5_11

    Chapter  Google Scholar 

  13. Di Luna, G.A., Flocchini, P., Poloni, F., Santoro, N., Viglietta, G.: The mutual visibility problem for oblivious robots. In: Proceedings of the 26th Canadian Computational Geometry Conference (CCCG), pp. 348–354 (2014)

    Google Scholar 

  14. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17, 643–644 (1974)

    Article  Google Scholar 

  15. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation by asynchronous oblivious robots. Theor. Comput. Sci. 407, 412–447 (2008)

    Article  MathSciNet  Google Scholar 

  16. Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M.: Rendezvous with constant memory. Theor. Comput. Sci. 621, 57–72 (2016)

    Article  MathSciNet  Google Scholar 

  17. Fujinaga, N., Yamauchi, Y., Ono, H., Kijima, S., Yamashita, M.: Pattern formation by oblivious asynchronous mobile robots. SIAM J. Comput. 44, 740–785 (2015)

    Article  MathSciNet  Google Scholar 

  18. Heriban, A., Defago, X., Tixeuil, S.: Optimally gathering two robots. In: Proceedings of the 19th International Conference on Distributed Computing and Networking (ICDCN), pp. 3:1–3:10 (2018)

    Google Scholar 

  19. Khan, L.U.: Visible light communication: applications, architecture, standardization and research challenges. Dig. Commun. Netw. 2, 78–88 (2017)

    Article  Google Scholar 

  20. Okumura, T., Wada, K., Katayama, Y.: Optimal asynchronous rendezvous for mobile robots with lights. Arxiv, CoRR abs/1707.04449 (2017)

    Google Scholar 

  21. Sharma, G., Alsaedi, R., Bush, C., Mukhopadyay, S.: The complete visibility problem for fat robots with lights. In: Proceedings of the 19th International Conference on Distributed Computing and Networking (ICDCN), pp. 21:1–21:4 (2018)

    Google Scholar 

  22. Sharma, G., Busch, C., Mukhopadhyay, S.: Mutual visibility with an optimal number of colors. In: Bose, P., Gąsieniec, L.A., Römer, K., Wattenhofer, R. (eds.) ALGOSENSORS 2015. LNCS, vol. 9536, pp. 196–210. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28472-9_15

    Chapter  Google Scholar 

  23. Sharma, G., Bush, C., Mukhopadyay, S.: Brief announcement: complete visibility for oblivious robots in linear time. In: Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 325–327 (2017)

    Google Scholar 

  24. Sharma, G., Vaidyanathan, R., Trahan, J.L., Busch, C., Rai, S.: Complete visibility for robots with lights in O(1) time. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 327–345. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49259-9_26

    Chapter  Google Scholar 

  25. Sharma, G., Vaidyanathan, R., Trahan, J.L., Bush, C., Rai, S.: O(log n)-time complete visibility for asynchronous robots with lights. In: Proceedings of the 32nd IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 513–522 (2017)

    Google Scholar 

  26. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28, 1347–1363 (1999)

    Article  MathSciNet  Google Scholar 

  27. Vaidyanathan, R., Bush, C., Trahan, J.L., Sharma, G., Rai, S.: Logarithmic-time complete visibility for robots with lights. In: Proceedings of the 29th IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 375–384 (2015)

    Google Scholar 

  28. Viglietta, G.: Rendezvous of two robots with visible bits. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 291–306. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-45346-5_21

    Chapter  Google Scholar 

  29. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious anonymous mobile robots. Theor. Comput. Sci. 411, 2433–2453 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Antonio Di Luna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di Luna, G.A., Viglietta, G. (2019). Robots with Lights. In: Flocchini, P., Prencipe, G., Santoro, N. (eds) Distributed Computing by Mobile Entities. Lecture Notes in Computer Science(), vol 11340. Springer, Cham. https://doi.org/10.1007/978-3-030-11072-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11072-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11071-0

  • Online ISBN: 978-3-030-11072-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics