Skip to main content

Application of a Distributed Containment Algorithm: Trajectory Tracking for Mobile Robots

  • Conference paper
  • First Online:
Informatics in Control, Automation and Robotics (ICINCO 2017)

Abstract

In this work, a distributed containment algorithm is proposed for the control of a formation of unicycle-type robots and mobile manipulators. This algorithm considers an interaction network among the agents in the formation, which is associated with a weighted directed graph. The structure of the formation considers the cases when virtual or real leaders delimit it. Further, the leaders form a convex hull that bounds the formation, and the positions of the followers inside this convex hull are determined by the Laplacian matrix of the network graph. The robot models are separated into a kinematic and a dynamic component. For the kinematic component, a containment algorithm is designed, while for the dynamic component, a controller based on the compensation of the mechanical parameters is proposed. The designed controllers are verified through computer simulations considering distinct number of agents and formation shapes. Additionally, some perturbations and mechanical parameters variations were applied to verify the robustness of the control laws.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tron, R., Thomas, J., Loianno, G., Daniilidis, K., Kumar, V.: A distributed optimization framework for localization and formation control: applications to vision-based measurements. IEEE Control Syst. 36(4), 22–44 (2016)

    Article  MathSciNet  Google Scholar 

  2. Rezaee, H., Abdollahi, F.: A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots. IEEE Trans. Ind. Electron. 61(1), 347–354 (2014)

    Article  Google Scholar 

  3. Hofmeister, M., Kronfeld, M., Zell, A.: Cooperative visual mapping in a heterogeneous team of mobile robots. In: 2011 IEEE International Conference on Robotics and Automation, pp. 1491–1496. Shanghai, China (2011)

    Google Scholar 

  4. Howard, A., Parker, L.E., Sukhatme, G.S.: Experiments with a large heterogeneous mobile robot team: exploration, mapping, deployment and detection. Int. J. Robot. Res. 25(5), 431447 (2006)

    Google Scholar 

  5. González-Sierra, J., Aranda-Bricaire, E.: Design of a virtual mechanism for trajectory tracking of convoys of mobile robots. In: 10th International Conference on Electrical Engineering. Computing Science and Automatic Control (CCE), pp. 364–368. Mexico City, Mexico (2013)

    Google Scholar 

  6. Maxwell, P., Rykowski, J., Hurlock, G.: Proposal for the initiation of general and military specific benchmarking of robotic convoys. In: IEEE Conference on Technologies for Practical Robot Applications (TePRA). Woburn, USA (2013)

    Google Scholar 

  7. Eoh, G., Jeon, J., Choi, J., Lee, B.: Multi-robot cooperative formation for overweight object transportation. In: IEEE/SICE International Symposium on System Integration (SII), pp. 726–731. Kyoto, Japan (2011)

    Google Scholar 

  8. Maghsoud, P., de Silva, C.W., Khan, M.T.: Autonomous and Cooperative multirobot system for multi-object transportation. In: The 9th International Conference on Computer Science and Education (ICCSE 2014), pp. 211–217. Vancouver, Canada (2014)

    Google Scholar 

  9. Markdahl, J., Karayiannidis, Y., Hu, X.: Cooperative object path following control by means of mobile manipulators: a switched systems approach. In: 10th IFAC Symposium on Robot Control International Federation of Automatic Control, pp. 773–778. Dubrovnik, Croatia (2012)

    Article  Google Scholar 

  10. Alonso-Mora, J., Baker, S., Rus, D.: Multi-robot formation control and object transport in dynamic environments via constrained optimization. Int. J. Robot. Res. 36(9), 1000–1021 (2017)

    Article  Google Scholar 

  11. Hekmatfat, T., Masehian, E., Mousavi, S.J.: Cooperative object transportation by multiple mobile manipulators through a hierarchical planning architecture. In: Proceeding of the 2nd RSI/ISM International Conference on Robotics and Mechatronics, pp. 503–508. Tehran, Iran (2014)

    Google Scholar 

  12. Jiao, J., Cao, Z., Gu, N., Nahavandi, S., Yang, Y., Tan, M.: Transportation by multiple mobile manipulators in unknown environments with obstacles. IEEE Syst. J. (2015)

    Google Scholar 

  13. Sayyaadi, H., Babaee, M.: Control of nonholonomic mobile manipulators for cooperative object transportation. Trans. B: Mech. Eng. 21(2), 347–357 (2013)

    Google Scholar 

  14. Macdonald, E.: Multi-robot Assignment and Formation Control. Master Thesis, School of Electrical and Computer Engineering, Georgia Institute of Technology (2011)

    Google Scholar 

  15. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

    Article  Google Scholar 

  16. Ren, W., Cao, Y.: Distributed Coordination of Multi-Agent Networks. Springer, London (2011)

    Book  Google Scholar 

  17. Ren, W., Beard, R.: Distributed Consensus in Multi-Vehicle Cooperative Control. Springer, London (2008)

    Book  Google Scholar 

  18. Oikawa, R., Takimoto, M., Kambayashi, Y.: In: 10th Jubilee IEEE International Symposium on Applied Computational Intelligence and Informatics, pp. 111–116. Timişoara, Romania (2015)

    Google Scholar 

  19. Ji, M., Ferrari-Trecate, G., Egerstedt, M., Buffa, A.: Containment Control in Mobile Networks. IEEE Trans. Autom. Control 53(8), 1972–1975 (2008)

    Article  MathSciNet  Google Scholar 

  20. Shao, N., Li, H., Wu, X., Li, G.: Distributed containment control and state observer design for multi-agent robotic system. Int. J. Model. Identif. Control 23(3), 193–203 (2015)

    Article  Google Scholar 

  21. Zhang, H., Zhao, Z., Meng, Z., Lin, Z.: Experimental verification of a multi-robot distributed control algorithm with containment and group dispersion behaviors: the case of dynamic leaders. In: 13th IFAC Symposium on Large Scale Complex Systems: Theory and Applications, pp. 153–158. Shanghai, China (2013)

    Google Scholar 

  22. Dimarogonas, D.V., Egerstedt, M., Kyriakopoulos, K.J.: A leader-based containment control strategy for multiple unicycles. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 5969–5973. San Diego, USA (2006)

    Google Scholar 

  23. Li, Z., Liu, X., Ren, W.: Distributed containment control of linear multi-agent systems with multiple leaders of bounded unknown inputs. In: Proceedings of the 31st Chinese Control Conference (CCC), pp. 6165–6170. Hefei, China (2012)

    Google Scholar 

  24. Cao, Y., Stuart, D., Ren, W., Meng, Z.: Distributed containment control for double-integrator dynamics: algorithms and experiments. In: American Control Conference (ACC). Baltimore, USA (2010)

    Google Scholar 

  25. Cao, Y., Ren, W., Egerstedt, M.: Distributed containment control with multiple stationary or dynamic leaders in fixed and switching directed networks. Automatica 48(8), 1586–1597 (2012)

    Article  MathSciNet  Google Scholar 

  26. Ton, C.: Robust Control Methods for Nonlinear Systems with Uncertain Dynamics and Unknown Control Direction. Doctoral Thesis, Engineering Physics, Embry-Riddle Aeronautical University (2013)

    Google Scholar 

  27. Cheng, L., Wang, Y., Ren, W., Hou, Z.-G., Tan, M.: Containment control of multiagent systems with dynamic leaders based on a pin-type approach. IEEE Trans. Cybern. 46(12), 3004–3017 (2016)

    Article  Google Scholar 

  28. Boiko, I.: Analysis of chattering in sliding mode control systems with continuous boundary layer approximation of discontinuous control. In: American Control Conference (ACC), pp. 757–762. San Francisco, USA (2011)

    Google Scholar 

  29. Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation. Birkhäuser, Basel (2014)

    Google Scholar 

  30. Ouyang, P.R., Acob, J., Pano, V.: PD with sliding mode control for trajectory tracking of robotic system. Robot. Comput.-Integr. Manuf. 30(2), 189–200 (2014)

    Article  Google Scholar 

  31. Diestel, R.: Graph Theory. Springer, Berlin (2017)

    Chapter  Google Scholar 

  32. Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, New York (2001)

    Google Scholar 

  33. Chung, F.: Spectral Graph Theory. American Mathematical Society, vol. 92 (1997)

    Google Scholar 

  34. Gruber, P.: Convex and Discrete Geometry. Springer, Berlin (2007)

    Google Scholar 

  35. Egerstedt, M., de la Croix, J.-P., Kawashima, H., Kingston, P.: Interacting with networks of mobile agents. In: Large-Scale Networks in Engineering and Life Sciences, pp. 199–224. Basel: Birkhäuser (2014)

    MATH  Google Scholar 

  36. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. Springer, London (2009)

    Book  Google Scholar 

  37. Carona, R., Aguiar, A.P., Gaspar, J.: Control of unicycle type robots: tracking, path following and point stabilization. In: Proceedings of IV Jornadas de Engenharia Electronica e Telecomunicacoes e de Computadores, pp. 180–185. Lisbon, Portugal (2008)

    Google Scholar 

  38. De la Cruz, C.: Control de Formación de Robots Móviles. Doctoral Thesis, Instituto de Automática, Universidad Nacional de San Juan, Argentina (2006)

    Google Scholar 

  39. My, C.A., Thanh, L.C.: Inverse dynamic of a N-links manipulator mounted on a wheeled mobile robot. In: 2013 International Conference on Control, Automation and Information Sciences (ICCAIS), pp. 164–170. Nha Trang, Vietnam (2013)

    Google Scholar 

  40. Vizuete, R., Abad Torres, J., Leica, P.: trajectory tracking based on containment algorithm applied to a formation of mobile manipulators. In: 14th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2017), vol. 1, pp. 122–131. Madrid, Spain (2017)

    Google Scholar 

  41. Pionner 3-DX Datasheet, Adept Technology, Inc. Rev. A. http://www.mobilerobots.com/ Libraries/Downloads/Pioneer3DX-P3DX-RevA.sflb.ashx

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Vizuete .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vizuete, R., Abad Torres, J., Leica, P. (2020). Application of a Distributed Containment Algorithm: Trajectory Tracking for Mobile Robots. In: Gusikhin, O., Madani, K. (eds) Informatics in Control, Automation and Robotics . ICINCO 2017. Lecture Notes in Electrical Engineering, vol 495. Springer, Cham. https://doi.org/10.1007/978-3-030-11292-9_11

Download citation

Publish with us

Policies and ethics