Skip to main content

Ice Accretion Detection and Anti-icing/Deicing Systems for Wind Turbine Blades

  • Conference paper
  • First Online:
Informatics in Control, Automation and Robotics (ICINCO 2017)

Abstract

Ice accretion detection and anti-icing/deicing of wind turbines blades is the topic of this paper. A conductive polymer paint is used to heat relevant surfaces of the blade under electric potential difference. Based on a temperature measure provided by various sensors placed on the blade, a control system is designed to prevent the blade icing up during wind turbine operation or to deice the blade after a rest. This deicing start-up requires knowing whether or not ice is present on the blade. Thus an observer based ice accretion system is also proposed. Tests carried out in a climatic chamber showed the validity and the accuracy of the proposed solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jasinski, W.J., Noe, S.C., Selig, M.S., Bragg, M.B.: Wind turbine performance under icing conditions. Trans. ASME J Solar Energy Eng. 120, 60–65 (1998)

    Article  Google Scholar 

  2. Hochart, C., Perron, J., Fortin, G., Ilinca, A.: Wind turbine performance under icing conditions. Wind Energy 11(4), 319–333 (2008)

    Article  Google Scholar 

  3. Kraj, A.G., Bibeau, E.L.: Phases of icing on wind turbine blades characterized by ice accumulation. Renew. Energy 35(5), 966–972 (2010)

    Article  Google Scholar 

  4. Ronsten, G.: Svenska erfarenheter av vindkraft i kallt klimat – nedisning, iskastoch avisning. Elforsk rapport 04, 13 (2004)

    Google Scholar 

  5. Ganander, H., Ronsten, G. Design load aspects due to ice loading on wind turbine blades. In: Proceedings of the 2003 BOREAS VI Conference. Pyhätunturi, Finland. Finnish Meteorological Institute (2003)

    Google Scholar 

  6. Frohboese P., Anders, A.: Effects of icing on wind turbine fatigue loads. J. Phys. Conf. Ser. 75 (2007)

    Google Scholar 

  7. Virk, M., Homola, M., Nicklasson, P.: Effect of rime ice accretion on aerodynamic characteristics of wind turbine blade profiles. Wind Eng. 34(2), 207–218 (2010)

    Article  Google Scholar 

  8. Seifert, H.: Technical requirements for rotor blades operating in cold climate. In: Proceedings of the 2003 BOREAS VI Conference. Pyhätunturi, Finland. Finnish Meteorological Institute (2003)

    Google Scholar 

  9. Parent, O., Ilinca, A.: Anti-icing and de-icing techniques for wind turbines: Critical review. Cold Reg. Sci. Technol. 65(1), 88–96 (2011)

    Article  Google Scholar 

  10. Kimura, S., Sato T., Kosugi, K.: The Effect of Anti-Icing Paint on the Adhesion Force of Ice Accretion on a Wind Turbine Blade, BOREAS VI, FMI, Pyhätunturi, Finland, p. 9 (2003)

    Google Scholar 

  11. Dalili, N., Edrisy, A., Carriveau, R.: A review of surface engineering issues critical to wind turbine performance. Renew. Sustain. Energy Rev. 13, 428–438 (2009)

    Article  Google Scholar 

  12. Botura G., Fisher K.: Development of Ice Protection System for Wind Turbine Applications, BOREAS VI, FMI, Pyhätunturi, Finland, p. 16 (2003)

    Google Scholar 

  13. Laakso, T., Peltola E.: Review on Blade Heating Technology and Future Prospects, BOREAS VII, FMI, Saariselkä, Finland, p. 12 (2005)

    Google Scholar 

  14. Rescoll Society, Web Site of the Technology Owner. http://www.rescoll.fr/nos_technologies_paniplast.php (2011)

  15. Sabatier, J., Lanusse, P., Feytout, B., Gracia, S.: CRONE control based anti-icing/deicing system for wind turbine blades. Control Eng. Pract. 56, 200–209 (2016)

    Article  Google Scholar 

  16. Sabatier J., Lanusse P., Feytout B., Gracia S., A solution for ice accretion detection on wind turbine blades. In: International Conference on Informatics in Control, Automation and Robotics ICINCO’2017, Madrid (2017)

    Google Scholar 

  17. Oustaloup, A.: Systèmes asservis linéaires d’ordre fractionnaire. Masson, Paris (1983)

    Google Scholar 

  18. Oustaloup, A.: “La commande CRONE”. Hermes Editor, Paris (1991)

    Google Scholar 

  19. Lanusse, P.: De la commande CRONE de première génération à la commande CRONE de troisième génération. Bordeaux I University, France, PhDThesis (1994)

    Google Scholar 

  20. Oustaloup, A., Mathieu, B., Lanusse, P.: The CRONE control of resonant plants: application to a flexible transmission. Eur. J. Control 1(2), 113–121 (1995)

    Article  Google Scholar 

  21. Åström, K.J.: Model uncertainty and robust control design. Cosy Workshop ESF Course, Valencia, Spain (1999)

    Google Scholar 

  22. Sabatier, J., Oustaloup, A., Garcia Iturricha, A., Lanusse, P.: CRONE Control: Principles and Extension to Time-Variant Plants with Asymptotically Constant Coefficients – Nonlinear Dynamics, vol. 29, No. 1–4, pp. 363–385. Kluwer Academic Publishers

    Google Scholar 

  23. Sabatier, J., Poullain, S., Latteux, P., Thomas, J.L., Oustaloup, A.: Robust speed control of a low damped electromechanical system based on CRONE control: application to a four mass experimental test bench. Int. J. Nonlin. Dynam Chaos Eng. Syst. 38(1–4), 383–400 (2004)

    Article  Google Scholar 

  24. Nelson-Gruel, D., Lanusse, P., Oustaloup, A.: Robust control design for multivariable plants with time-delays. Chem. Eng. J. Elsevier 146(3), 414–427 (2009)

    Article  Google Scholar 

  25. Oustaloup, A., Lanusse, P., Sabatier, J., Melchior, P.: CRONE control: principles, extensions and applications. J. Appl. Nonlin. Dynam. 2(3), 207–223 (2013)

    Article  Google Scholar 

  26. Sabatier, J., Lanusse, P., Melchior, P., Oustaloup, A.: Fractional Order Differentiation and Robust Control Design: CRONE. Springer, H-infinity and Motion Control (2015)

    Book  Google Scholar 

  27. Houpis, C.H.: Refined design method for sampled-data control systems: the pseudo-continuous-time (PCT) control system design. Control Theor. Appl. IEE Proc. D 132(2), 69–74 (1985)

    Article  Google Scholar 

  28. Lanusse, P.: CRONE Control System Design, a CRONE toolbox for Matlab. http://www.ims-bordeaux.fr/CRONE/toolbox (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jocelyn Sabatier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sabatier, J., Lanusse, P., Feytout, B., Gracia, S. (2020). Ice Accretion Detection and Anti-icing/Deicing Systems for Wind Turbine Blades. In: Gusikhin, O., Madani, K. (eds) Informatics in Control, Automation and Robotics . ICINCO 2017. Lecture Notes in Electrical Engineering, vol 495. Springer, Cham. https://doi.org/10.1007/978-3-030-11292-9_32

Download citation

Publish with us

Policies and ethics