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Abstract. Clinical characterization and interpretation of respiratory sound symp-
toms have remained a challenge due to the similarities in the audio properties that 
manifest during auscultation in medical diagnosis. The misinterpretation and 
conflation of these sounds coupled with the comorbidity cases of the associated 
ailments – particularly, exercised-induced respiratory conditions; result in the un-
der-diagnosis and undertreatment of the conditions. Though several studies have 
proposed computerized systems for objective classification and evaluation of 
these sounds, most of the algorithms run on desktop and backend systems. In this 
study, we leverage the improved computational and storage capabilities of mod-
ern smartphones to distinguish the respiratory sound symptoms using machine 
learning algorithms namely:  Random Forest (RF), Support Vector Machine 
(SVM), and k-Nearest Neighbour (k-NN). The appreciable performance of these 
classifiers on a mobile phone shows smartphone as an alternate tool for recogni-
tion and discrimination of respiratory symptoms in real-time scenarios. Further, 
the objective clinical data provided by the machine learning process could aid 
physicians in the screening and treatment of a patient during ambulatory care 
where specialized medical devices may not be readily available. 
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1 Introduction 

Respiratory sounds such as cough, sneeze, wheeze, stridor, and throat clearing are ob-
served as clinical indicators containing valuable information about common respiratory 
ailments. Conditions such as Asthma, Vocal Cord Dysfunction (VCD), and Rhinitis 
provoked by prolonged and vigorous exercise, are often associated with these symp-
toms which sometimes overlap; thus, making it difficult for proper diagnosis and treat-
ment of the underlying ailment symptomized by the respiratory sounds. Given the sim-
ilarity of their acoustic properties, these sounds at times, are conflated and misinter-
preted in medical assessment of patients with respiratory conditions using conventional 
methods. Further, the evaluation of these sounds is somewhat subjective to physicians’ 
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experience and interpretation, as well as the performance of the medical device used 
for monitoring and measurement [1], [2]. 

To address these issues, several studies in recent times have proposed different ap-
proaches for objective detection and classification of respiratory sounds using comput-
erized systems. However, with improvement on the storage and computational capabil-
ities of mobile devices, there is a gradual move from the use of specialized medical 
devices and computer systems to wearable devices for recording and analysing respir-
atory sounds in real-time situations [3], [4]. Much efforts have been focused on the 
analysis of wheezing sound given its clinical importance in the evaluation of asthma, 
COPD and other pulmonary disorders [5]. Considerable attention has also been given 
to physiological mechanism and formation of other pathological respiratory sounds 
such as stridor, cough, and crackles [3], [6]. At times, these sounds appear together on 
the same respiratory signal and their accurate detection and classification remain sub-
jects of interest to many researchers [7], [8], [9].  

The sound symptoms specifically, bronchial asthma wheezes and VCD stridor are 
often confused in the preliminary diagnosis of airways obstruction during physical ex-
ercise [10]. Both sounds have been described as continuous, high-pitched musical 
sounds. They also exhibit periodicity in time domain given their sinusoidal waveforms. 
However, stridor is said to be louder and can be heard around the neck without the aid 
of a stethoscope. Dominant frequencies are between 100 - 1000Hz [6]. Wheeze on the 
other hand, originates from the bronchia and it is mostly audible around the chest wall 
[11], with dominant frequencies around 600Hz [12]. Other respiratory sounds heard in 
the events of air passage obstruction or irritation include cough, throat clearing, sneez-
ing and sniffle. Unlike wheeze and stridor, these categories of sounds are percussive, 
transient, and have quasi-periodic wave forms and short duration. Apart from audio 
information of the symptoms, there are other factors used in the differential diagnosis 
of exercised-induced asthma and VCD such as the respiratory phase of the sound oc-
currence (Inspiratory/Expiratory/Biphasic), and the reversibility of conditions [6], [10], 
[11]. However, these issues are not within the scope of this paper. 

The study objective is to distinguish acoustic properties of respiratory symptoms 
that correlate with certain respiratory conditions induced by highly intensive physical 
activity; using smartphone as a platform for the   analysis and classification of the 
sounds. The approach focuses on time-domain and frequency-domain analysis of these 
sounds. The machine learning algorithms exploit the differences in the energy content 
and variation, periodicity, spectral texture and shape as well as localized spectral 
changes in the signal frames. The extracted features from the audio data analysis are 
fed into classifiers - Random Forest, support vector machine (SVM), and k-Nearest 
Neighbor (k-NN). The classification algorithms are performed on both individual do-
main and combined domain feature sets. A leave-one-out approach is used in the eval-
uation of the performance of the classifiers for objective comparison of their discrimi-
natory abilities. 
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2 Related Work 

Recent studies have focused on audio-based systems for continuous monitoring and 
detection of vital signs relating to management and control of long-term respiratory 
conditions. Aydore et al.  in their work [1], performed a detailed experiment on the 
classification of wheeze and non-wheeze episodes in a respiratory sound, using linear 
analysis. Though the approach they adopted yielded an impressive success rate of 
93.5% in the testing; the study was not specific about the non-wheeze category of 
sounds such as rhonchi and stridor which mimic wheeze, and are reportedly misdiag-
nosed as wheeze in clinical practice. The work however, was extended by Ulukaya et 
al. [7] on the discrimination of monophonic and polyphonic wheezes using time-fre-
quency analysis based on two features – mean crossing irregularity (MCI) in the time 
domain, and percentile frequency ratios in the frequency domain. The authors consid-
ered MCI as the best discriminating feature with a performance accuracy of 75.78% 
when combined with image processing. 

There are on-going research efforts towards the design of monitoring and detection 
systems for respiratory conditions based on mobile platforms. The overall aim of these 
studies is to increase the awareness and compliance by individuals in managing their 
conditions, and to improve the efficacy of treatment procedures and therapies by health 
professionals. In the study [3], mobile phone was used as a sensing platform to track 
cough frequency in individuals and across geographical locations. The embedded mi-
crophone in the mobile phone serves as audio sensor to record cough events, with the 
phone placed in the shirt or pant pockets or strapped on the neck of the user. According 
to the authors, results obtained from the study could be used in further diagnosis and 
treatment of diseases such as pneumonia, COPD, asthma, and cystic fibrosis. Auto-
mated Device for asthma Monitoring (ADAM) was developed by Sterling et al. [13], 
to monitor asthma symptoms in teenagers. The system design involves the use of lapel 
microphone attached to the mobile and worn by the user to capture audio signals. It 
uses Mel-frequency cepstral coefficients (MFCC) and multiple Hidden Markov Model 
(HMM) for feature extraction and classification, to detect the ‘presence’ or ‘absence’ 
of cough in the recorded sounds. The sensitivity of the detection algorithm is 85.7%. 
BodyBeat, proposed by Rahman et al. [14], is another mobile sensing system for recog-
nition of non-speech body sounds. Like ADAM, it uses a custom-made microphone 
attached to an embedded unit (Micro-controller) for audio capturing and pre-pro-
cessing. The embedded unit connects to the mobile phone through Bluetooth for feature 
extraction and classification of the audio windows.  Sun et al. [15] in their study, pro-
posed SymDetector, a mobile application for detection of acoustic respiratory symp-
toms. The application samples audio data using smartphone’s built-in microphone and 
performs symptom detection and classification using multi-level coarse classifier and 
SVM.  

Though the designs appear quite elaborate and plausible on the mobile platform; 
common issues with these approaches include the ease of use of the system, and the 
reproducibility of the algorithms used in the detection process. There could be concerns 
about the setup and cost of deployment by the user for systems that utilize external 
audio sensors and other devices connected to the mobile phone. Also, running multiple 
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level classification for the detection algorithms may impact on the response time of the 
applications when deployed in real-time. In addressing these issues, our study uses a 
standalone mobile platform with no external gadgets connected to the smartphone. This 
allows all the major operations – audio sampling, pre-processing, feature extraction, 
and classification to be performed on the mobile phone. 

The next section of the paper describes the methods used in audio data acquisition, 
pre-processing and analysis techniques, and feature extraction. Section 4 highlights the 
classification algorithms and feature sets for the classifiers. In section 5, the classifica-
tion results and performance evaluation are discussed. Section 6 describes application 
scenarios of the classification results while the conclusion on the study is provided in 
the last section. 
  

3 Methods 

3.1 Sound Recordings and Datasets 

To ensure the reliability and fidelity of the datasets, the recordings used in this study 
were retrieved from different but trusted sources. The wheeze and stridor sounds are 
specifically collected under licensed agreement, from R.A.L.E Lung repository [16]; 
with each record, pre-labelled by an expert physician. The cough, throat clearing, and 
other sounds are obtained from direct recordings from healthy individuals and patho-
logical subjects using the mobile phone microphone. The dataset comprises of five cat-
egories of sound including: wheeze, stridor, cough, throat clearing, and a mixed collec-
tion of other sounds.  By visual inspection of the waveforms and audio verification, all 
distinct segments of the audio recordings containing the actual sounds are selected. 
Given the varying length and sampling rate of the recordings obtained from the repos-
itory, the audios are down-sampled to 8000Hz and segmented into equal length to en-
sure uniformity and to lessen computational load on the mobile device. 

 
3.2  Signal Pre-Processing and Analysis 

The techniques used in the signal pre-processing and analysis include windowing and 
digitization of each audio signal into frames of equal length (128ms) with 87.5% over-
lap. The signal frames are decomposed into spectral components using the Discrete 
Short-Time Fourier Transform (STFT) technique. Hamming window of size N = 1024 
was used to reduce spectral leakage in the signal frames. The windowing and overlap-
ping techniques help to smoothen the spectral parameters that vary with time. 
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3.3 Feature Extraction 

Fig. 1. A two-level step for Feature Extraction.  

 
 

In preparing the feature sets for classification, we employed two steps in the feature 
extraction. First, is the frame-level extraction, where the resulting coefficients from 
STFT served as input parameters for calculating the temporal and spectral instantane-
ous features of the audio signals. The window-level features or texture features are de-
rived from the instantaneous features. These features are basically statistical functions 
of the frame-level features expressed in terms of rate of change, extremes, averages, 
and moments of grouped frames - about 5 seconds of the audio duration as shown in 
Fig. 1.  

Time-domain features used include the RMS energy and Zero Crossing Rate (ZCR) 
of each frame in the audio record. Some of spectral features used in the classification 
are described as follows: 

Spectral Centroid (SC).  This feature measures the spectral shape of individual frames 
and it is defined as the centre of spectral energy (power spectrum). Higher values indi-
cate “brighter” or “sharper” textures with significant high frequencies, while lower val-
ues correspond to low brightness and much lower frequencies. Given P as the power 
spectrum of the frame f, and N being the Nyquist frequency with k as the frequency 
bins; SC is calculated as: 

 

𝑆𝐶(𝑓) =	
∑ 𝑘. 𝑃,-./0
,12	
∑ 𝑃,-./0
,12

 [17]                            (1) 
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Spectral Bandwidth (SB). Also known as ‘instantaneous bandwidth’ [18], SB techni-
cally describes the spread or concentration of power spectrum around the SC. It is a 
measure of ‘flatness’ of the spectral shape. Higher values often indicate noisiness in the 
input signal and hence, wider distribution of the spectral energy; while low values show 
higher concentration of the spectral energy at a fixed frequency region. SB is calculated 
as follows: 

 

𝑆𝐵(𝑓) = 4
∑ (𝑘 − 𝑆𝐶(𝑓))-. |𝑃,|-./0
,12

∑ 𝑃,-./0
,12

 
[17]                    (2) 

Spectral Flux(SF). Spectral Flux is an approximate measure of the sensation ‘rough-
ness’ of a signal frame [18]. It is used to determine the local variation or distortion of 
the spectral shape and it is given by: 

 

𝑆𝐹(𝑓) =
8∑ 9:𝑃;: − :𝑃;/0:<

-./0
,12

𝑁 − 1  [17]                   (3) 

 
Table 1 provides a full list of the frame-level and window-level features. 
 

Table 1. Classification Features [17]. 
 

 Feature Group Descriptor Classification Acronym  

Fr
am

e 
Le

ve
l 

Energy Root Mean Square RMS 
Periodicity Zero Crossing Rate ZCR 
Spectral Shape Spectral Centroid SC 

Spectral Bandwidth SB 
Spectral Flux SF 

W
in

do
w

 L
ev

el
 

Extremes AMR of RMS window [15] amrRMS 
Relative Max RMS [15] rmrRMS 

Averages Mean of RMS window meanRMS 
Mean of SC window meanSC 
Mean of SB window meanSB 
Mean of SF window meanSF 

Moments Variance of RMS window varRMS 
Std. of ZCR window stdZCR 
Mean Crossing Irregularity [7] mciZCR 
Variance of SC window varSC 
Variance of SB window varSB 

  Variance of SF window varSF 
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4 Classification Algorithms 

In the study, three classifiers – Random Forest, kNN, and SVM were used to investigate 
the performance of the extracted input parameters in differentiating the audio sound 
patterns. Each of the classifiers represents a category of classification algorithms often 
used in Machine Learning. Whereas the SVM is a non-probabilistic binary classifier 
that favours fewer classes, k-NN is an instance-based algorithm that uses the similarity 
measures of the audio features to find the best match for a given new instance; while 
Random Forest is an ensemble algorithm that leverages the desirable potentials of 
‘weaker’ models for better predictions.  We compare the discrimination abilities of the 
classifiers using both individual domain feature set and combined domain feature set. 
The classification process involves the following steps: 
 

4.1 Feature Selection 

Best of the discriminatory audio features were selected using two attribute-selection 
algorithms namely – Correlation Feature Selection (CFS) and Principal Components 
Analysis (PCA). The original feature set consists of 12 attributes as highlighted in Table 
1. However, the best first three features selected by CFS were varRMS, stdZCR and 
varSB; while the highest-ranking features according to PCA were meanRMS, arm-
RMS, meanSF, stdZCR and varSF. It is interesting to note that the three features se-
lected by CFS were good representation of the audio properties we considered earlier 
in the study. Whereas varRMS provides information on the energy level of the audio 
signal, stdZCR shows the periodicity, while varSB represents the spread or flatness of 
the audio spectral shape in terms of frequency localization. 
 

4.2 Training and Testing 

The experimental processes – STFT, Feature Extraction and Classification were carried 
out on Android Studio 1.5.1 Integrated Development Environment (IDE).  With em-
bedded Weka APIs, the classifier models were programmatically trained on the mobile 
devices running on Android 4.2.2 and 5.1.1, which were also used to record some of 
the audios used to evaluate the performance of the algorithms in real-time. The classi-
fication model was built for recognition and discriminating of respiratory signals with 
related sound features. We opted to train the models directly on the mobile devices 
rather than porting desktop-trained models, due to serialization and compatibility issues 
with android devices. Moreover, the response time of building the model on the 
smartphone is faster compared to the performance on the desktop.  The machine learn-
ing algorithms are trained by using the statistical window-level features obtained from 
the audio signal frames.  Due to limited datasets, a ‘leave-one-out’ strategy for 10-fold 
cross validation was used in the training and evaluation of the performance of the clas-
sifiers and the selected features. Statistical metrics used in the performance evaluation 
were precision, recall and F-measure. 
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5 Results 

Here, we discuss the results and performance of the machine learning algorithms using 
different criteria. We also evaluated the real-time performance of the mobile device 
benchmarked on the CPU and memory usage as well as execution time of each of the 
modules in the entire process. 

5.1 Performance of the Classifiers 

In the evaluation of the classification process, we presented different scenarios of the 
problem to the classifiers in order to understand the mechanisms of their performances. 
The criteria used are as follows: 

 
 Different Categories of Datasets. We used two categories of datasets – 2.5 seconds 
length and 5 seconds length of the audio symptoms.  The 2.5s length dataset has a total 
of 163 records (Wheeze = 49, Stridor = 33, Cough = 27, Clear-Throat = 26, Other = 
28), while the 5s dataset used in the classification consists of 99 instances in total. 
Though there were fewer instances in the 5s datasets, the algorithms performed better 
on this category than in 2.5s datasets. This implies that longer audio durations rather 
than the number of instances provided the classifiers with more information to learn 
about the audio patterns. 

 
Scaling the number of classes and features. Scaling the number of classes and fea-
tures used in the classification also had much impact on the performance of the classi-
fiers. From Table 2, we observed that the SVM classifier performed much better when 
we reduce the number of symptom classes to two; however, reducing only the number 
of features decreased the performance significantly. The k-NN algorithm on the other 
hand, performed fairly well in all the scenarios but showcased its best with reduced 
number of features and classes. Likewise, RF maintain its robustness with notable im-
provement in the performance when the number of features are few.  

 

Table 2. Overall accuracy of the classifiers with scaled number of classes and features 

Classifi-
ers 

All Features & All 
Classes m =12, n =5 

Reduced # of 
features  m =3 

Reduced # of 
classes n =2 

Reduced # 
of features 
& classes 
m=3, n =2 

k-NN 0.88 0.88 0.89 0.92 
SVM 0.75 0.59 0.80 0.78 
RF 0.86 0.91 0.87 0.89 
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Adjustment of the algorithms’ parameters. By increasing the complexity parameter 
C of the SVM from 1.0 to 3.0, the classifier performance improved by 4.6%. However, 
setting the parameter k of the k-NN Classifier to 1, gives an accuracy of 88.88 % but 
drops to 53.98% when k is set to 5.  

 
To further evaluate the discriminatory ability of the classification features, we ex-

amined two groups of classes whose elements are often conflated given the high level 
of their resemblance. These are: Wheeze vs. Stridor and Cough vs. Clear Throat. Ac-
cording to medical experts, these respiratory sounds are very common in exercise-in-
duced VCD and bronchoconstriction or bronchial asthma. The comparisons are shown 
in Fig. 2 and Fig. 3 respectively. Fig. 2 indicates that though wheeze and stridor signals 
relatively have uniform oscillation (periodicity), stridor has a ‘flatter’ spectral shape 
given its wide frequency range. We also noticed that the classifiers generally found it 
difficult differentiating between cough and throat clearing. However, when presented 
with only time-domain features, the discrimination became clearer as shown in Fig. 3.  
 
 
 
 

 
Fig. 2. Discriminating ability of time-frequency domain features – stdZCR and varSB on 

wheeze and stridor [17]. 
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Fig. 3. Discrimination of cough from throat clearing by time-domain features – stdZCR and 
varRMS [17]. 

 
  Though we experimented with three classifiers, we settled for only one - Random 
Forest, given its robustness in different scenarios as show in Table 3. The classifier also 
has a reasonable response time on the device and thus, was used for the real-time im-
plementation of the classification tool. 
 

Table 3. Weighted average performance for all classes with the three best CFS features 

 Precision Recall F-measure 
k-NN 0.889 0.889 0.887 
SVM 0.668 0.596 0.585 
RF 0.918 0.919 0.918 

 
 

As we were unable to get real-time access to clinical respiratory sound symptoms 
such as wheezes and stridor at the time of writing this paper; we performed an experi-
mental test on the discriminatory ability of the classification tool in real-time, using 
records of common sound symptoms – cough and clear throat volunteered by asymp-
tomatic individuals and those with pathological conditions. Fig. 4 shows correctly de-
tected cough and clear- throat sounds in real-time on an android phone (Huawei p6 
Ascend). The classification tool was also able to predict correctly, offline recorded 
wheeze and stridor sounds (Figs. 5a & 5b). By mere visualization, we can observe that 
the waveforms and the spectrograms of these sounds are different from each other. This 
may as well serve as a clue to physicians in the differential diagnosis of the underlying 
respiratory illnesses. 
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(a)    (b)  
 
Fig. 4 (a) and (b). Detected cough and clear-throat sounds in real-time. 
 

(a)      (b)  
 

Fig. 5 (a) and (b). Detected wheeze and stridor sounds recorded offline. 



12 

 

5.2 Device Performance on Resource Usage 

We evaluate the smartphone performance on the utilization of the system resources 
when executing the major modules of the machine learning in real-time. The modules 
include audio pre-processing (framing and FFT), feature extraction, and the classifica-
tion. Table 4 shows the measurements on the consumption of the device resources dur-
ing the application run-time. The execution time in milliseconds (ms) is profiled in the 
android code. As expected, the response time for the pre-processing module was a bit 
long due to FFT metrics which are numerically intensive on the resources.  
 

Table 4. Benchmarks on device resource usage by the major operations [17] 

Module CPU Memory Response Time 
Pre-processing 27% 2.2MB 1404 ms 
Feature Extraction 25% 8MB 556 ms 
Classification 0.02% 2MB 722 ms 
    

 
 
 

6 Application 

The application of the results obtained from the machine learning can be demonstrated 
using the following case scenarios in the study domain; where the mobile phone is used 
to monitor exercise-induced respiratory conditions (EIRCs) e.g. asthma, bron-
chospasm, rhinitis, and VCD.  

6.1 Symptom Tracking  

One of the important applications of this study is in assisting patients to keep track of 
the sound symptoms of their conditions. The study provides a visualized summary of 
the captured events on daily basis. For instance, Fig. 6 shows a column chart that 
measures the frequency of each sound symptom occurrence at specific periods of the 
day. 
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Fig. 6. Daily summary of the frequency of respiratory sound symptoms. 

 

6.2 Integrated real-time monitoring of sound symptoms and contextual 
data for patient’s self-management 

 

 
 

Fig. 7. Embedded SQLite database in the smartphone that captures sound symptoms 
and contextual evidences of EIRCs. 
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Fig. 7 shows an embedded database (SQLite) that automatically captures both the 

symptoms and the contextual evidences by the smartphone. This aspect of the study 
also affords the user real-time access and instantaneous knowledge of the monitored 
events which are displayed graphically as illustrated in Fig.6 (the chart). For instance, 
the most frequently detected sound symptom, the level of physical activity, as well as 
the variations in the ambient temperature and humidity within the monitoring period. 
Using this knowledge, the user can correlate the captured events based on the context. 
For example, knowing the specific period of the day (e.g. morning, noon or night) when 
a symptom gets worse and the triggers that aggravate the symptoms, would help the 
patient to personally manage and control his/her respiratory condition. The generated 
information can also be processed into a report which can be stored on the mobile de-
vice or shared with healthcare providers and physicians for subsequent actions. 

 
 

7 Conclusions 

The difficulty in differentiating related respiratory sound symptoms at times, leads to 
subjective evaluation in the medical assessment of a patient which may result in misdi-
agnosis and undertreatment of the associated ailments. Though many researchers have 
proposed alternative approaches for objective detection and classification of respiratory 
sound symptoms using computer-based systems; a few of these approaches have been 
successfully performed exclusively on mobile phones. Leveraging the improvement on 
the storage and computational capabilities of modern mobile phones, we advanced the 
use of smartphone to detect and classify these sounds in real-time scenarios. And the 
tools we employed here were machine learning algorithms and standard sets of both 
temporal and spectral features of the audio signals often used in vocal and lung sound 
analysis. The study recorded over 83% accuracy on the average, in the classification 
process. We also illustrated the practical applications of the results in the study domain. 
We believe the information obtained from the process can aid physicians in further 
diagnosis of the suspected respiratory conditions; and also assist patients in the control 
and management of their conditions. 
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