Abstract
Inter-frame forgery is a common type of surveillance video forgery where a tampered process occurs in a temporal domain such as frame deletion, insertion, and shuffling. However, there are a number of methods that have been proposed for detecting this type of tampering, most of the methods have been found to be deficient in terms of either accuracy or running time. In this paper, a new approach is proposed as an efficient method for detecting frame deletion, insertion, and shuffling attacks. Firstly, the video is extracted into frames and the temporal average for each non-overlapping subsequence of frames is computed for examination instead of exhaustive checking which can be reduced the running time. Then, the universal image quality index is used for detecting the inter-frame forgery and determining its location. The experimental results show the efficiency of the proposed method for detecting inter-frame forgery with high accuracy and low running time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baudry, S.: Frame-accurate temporal registration for non-blind video watermarking. In: Proceedings of the on Multimedia and Security, MM&Sec 2012, pp. 19–26. ACM, New York (2012). https://doi.org/10.1145/2361407.2361411
Baudry, S., Chupeau, B., Lefèbvre, F.: A framework for video forensics based on local and temporal fingerprints. In: Proceedings of the 16th IEEE International Conference on Image Processing, ICIP’09, pp. 2853–2856. IEEE Press, Piscataway (2009)
Cuevas, C., Yanez, E.M., Garcia, N.: Labeled dataset for integral evaluation of moving object detection algorithms: lasiesta. Comput. Vis. Image Underst. 152(Supplement C), 103–117 (2016). https://doi.org/10.1016/j.cviu.2016.08.005. http://www.gti.ssr.upm.es/data/lasiesta_database.html
Fadl, S.M., Han, Q., Li, Q.: Authentication of surveillance videos: detecting frame duplication based on residual frame. J. Forensic Sci. 63(4), 1099–1109 (2018). https://doi.org/10.1111/1556-4029.13658
Liu, Y., Huang, T.: Exposing video inter-frame forgery by zernike opponentchromaticity moments and coarseness analysis. Multimedia Syst. 23(2), 223–238 (2017). https://doi.org/10.1007/s00530-015-0478-1
Mao, J., Xiao, G., Sheng, W., Hu, Y., Qu, Z.: A method for video authenticity based on the fingerprint of scene frame. Neurocomputing 173(Part 3), 2022–2032 (2016). https://doi.org/10.1016/j.neucom.2015.09.001
Nixon, M.S., Aguado, A.S.: Chapter 9-moving object detection and description. In: Nixon, M.S., Aguado, A.S. (eds.) Feature Extraction & Image Processing for Computer Vision, 3rd edn., pp. 435–487. Academic Press, Oxford (2012). https://doi.org/10.1016/B978-0-12-396549-3.00009-4
Pathak, A., Patil, D.: Review of techniques for detecting video forgeries. Int. J. Comput. Sci. Mobile Comput. 3(2), 422–438 (2014)
Qadir, G., Yahaya, S., Ho, A.T.S.: Surrey university library for forensic analysis (SULFA) of video content. In: IET Conference on Image Processing (IPR), pp. 1–6 (2012). https://doi.org/10.1049/cp.2012.0422,. http://sulfa.cs.surrey.ac.uk/index.php
Shi, Y., Qi, M., Yi, Y., Zhang, M., Kong, J.: Object based dual watermarking for video authentication. Optik - Int. J. Light Electron Opt. 124(19), 3827–3834 (2013). https://doi.org/10.1016/j.ijleo.2012.11.078
Singh, R.D., Aggarwal, N.: Video content authentication techniques: a comprehensive survey. Multimedia Syst. 24(2), 211–240 (2018). https://doi.org/10.1007/s00530-017-0538-9
Sitara, K., Mehtre, B.: Digital video tampering detection: an overview ofpassive techniques. Digital Investig. 18(Supplement C), 8–22 (2016). https://doi.org/10.1016/j.diin.2016.06.003
Sohn, H., Neve, W.D., Ro, Y.M.: Privacy protection in video surveillancesystems: analysis of subband-adaptive scrambling in JPEG XR. IEEE Trans. Circuits Syst. Video Technol. 21(2), 170–177 (2011). https://doi.org/10.1109/TCSVT.2011.2106250. http://ivylab.kaist.ac.kr/demo/vs/dataset.htm
Ulutas, G., Ustubioglu, B., Ulutas, M., Nabiyev, V.: Frameduplication/mirroring detection method with binary features. IET Image Process. 11(5), 333–342 (2017). https://doi.org/10.1049/iet-ipr.2016.0321
Ulutas, G., Ustubioglu, B., Ulutas, M., Nabiyev, V.V.: Frame duplication detection based on bow model. Multimedia Syst. 24(5), 549–567 (2018). https://doi.org/10.1007/s00530-017-0581-6
Wahab, A.W.A., Bagiwa, M.A., Idris, M.Y.I., Khan, S., Razak, Z., Ariffin, M.R.K.: Passive video forgery detection techniques: a survey. In: 10th International Conference on Information Assurance and Security, pp. 29–34. IEEE (2014). https://doi.org/10.1109/ISIAS.2014.7064616
Wang, W., Jiang, X., Wang, S., Wan, M., Sun, T.: Identifying video forgery process using optical flow. In: Shi, Y.Q., Kim, H.-J., Pérez-González, F. (eds.) IWDW 2013. LNCS, vol. 8389, pp. 244–257. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43886-2_18
Wang, W., Farid, H.: Exposing digital forgeries in video by detecting duplication. In: Proceedings of the 9th workshop on Multimedia and Security, pp. 35–42. ACM, Dallas, Texas (2007)
Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002). https://doi.org/10.1109/97.995823
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861
Zahir, S.A., Kashanchi, F.: A new image quality measure. In: 2013 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–5 (2013). https://doi.org/10.1109/CCECE.2013.6567730
Zhao, D.N., Wang, R.K., Lu, Z.M.: Inter-frame passive-blind forgery detection for video shot based on similarity analysis. Multimedia Tools and Applications (2018). https://doi.org/10.1007/s11042-018-5791-1
Zheng, L., Sun, T., Shi, Y.-Q.: Inter-frame video forgery detection based on block-wise brightness variance descriptor. In: Shi, Y.-Q., Kim, H.J., Pérez-González, F., Yang, C.-N. (eds.) IWDW 2014. LNCS, vol. 9023, pp. 18–30. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19321-2_2
Acknowledgments
This work was supported by the National Natural Science Foundation of China [grant numbers 61471141, 61361166006, 61301099]; Key Technology Program of Shenzhen, China, [grant number JSGG20160427185010977]; Basic Research Project of Shenzhen, China [grant number JCYJ20150513151706561].
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Fadl, S., Han, Q., Li, Q. (2019). Surveillance Video Authentication Using Universal Image Quality Index of Temporal Average. In: Yoo, C., Shi, YQ., Kim, H., Piva, A., Kim, G. (eds) Digital Forensics and Watermarking. IWDW 2018. Lecture Notes in Computer Science(), vol 11378. Springer, Cham. https://doi.org/10.1007/978-3-030-11389-6_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-11389-6_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11388-9
Online ISBN: 978-3-030-11389-6
eBook Packages: Computer ScienceComputer Science (R0)