Skip to main content

Surveillance Video Authentication Using Universal Image Quality Index of Temporal Average

  • Conference paper
  • First Online:
Digital Forensics and Watermarking (IWDW 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11378))

Included in the following conference series:

  • 1395 Accesses

Abstract

Inter-frame forgery is a common type of surveillance video forgery where a tampered process occurs in a temporal domain such as frame deletion, insertion, and shuffling. However, there are a number of methods that have been proposed for detecting this type of tampering, most of the methods have been found to be deficient in terms of either accuracy or running time. In this paper, a new approach is proposed as an efficient method for detecting frame deletion, insertion, and shuffling attacks. Firstly, the video is extracted into frames and the temporal average for each non-overlapping subsequence of frames is computed for examination instead of exhaustive checking which can be reduced the running time. Then, the universal image quality index is used for detecting the inter-frame forgery and determining its location. The experimental results show the efficiency of the proposed method for detecting inter-frame forgery with high accuracy and low running time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baudry, S.: Frame-accurate temporal registration for non-blind video watermarking. In: Proceedings of the on Multimedia and Security, MM&Sec 2012, pp. 19–26. ACM, New York (2012). https://doi.org/10.1145/2361407.2361411

  2. Baudry, S., Chupeau, B., Lefèbvre, F.: A framework for video forensics based on local and temporal fingerprints. In: Proceedings of the 16th IEEE International Conference on Image Processing, ICIP’09, pp. 2853–2856. IEEE Press, Piscataway (2009)

    Google Scholar 

  3. Cuevas, C., Yanez, E.M., Garcia, N.: Labeled dataset for integral evaluation of moving object detection algorithms: lasiesta. Comput. Vis. Image Underst. 152(Supplement C), 103–117 (2016). https://doi.org/10.1016/j.cviu.2016.08.005. http://www.gti.ssr.upm.es/data/lasiesta_database.html

    Article  Google Scholar 

  4. Fadl, S.M., Han, Q., Li, Q.: Authentication of surveillance videos: detecting frame duplication based on residual frame. J. Forensic Sci. 63(4), 1099–1109 (2018). https://doi.org/10.1111/1556-4029.13658

    Article  Google Scholar 

  5. Liu, Y., Huang, T.: Exposing video inter-frame forgery by zernike opponentchromaticity moments and coarseness analysis. Multimedia Syst. 23(2), 223–238 (2017). https://doi.org/10.1007/s00530-015-0478-1

    Article  MathSciNet  Google Scholar 

  6. Mao, J., Xiao, G., Sheng, W., Hu, Y., Qu, Z.: A method for video authenticity based on the fingerprint of scene frame. Neurocomputing 173(Part 3), 2022–2032 (2016). https://doi.org/10.1016/j.neucom.2015.09.001

    Article  Google Scholar 

  7. Nixon, M.S., Aguado, A.S.: Chapter 9-moving object detection and description. In: Nixon, M.S., Aguado, A.S. (eds.) Feature Extraction & Image Processing for Computer Vision, 3rd edn., pp. 435–487. Academic Press, Oxford (2012). https://doi.org/10.1016/B978-0-12-396549-3.00009-4

    Chapter  Google Scholar 

  8. Pathak, A., Patil, D.: Review of techniques for detecting video forgeries. Int. J. Comput. Sci. Mobile Comput. 3(2), 422–438 (2014)

    Google Scholar 

  9. Qadir, G., Yahaya, S., Ho, A.T.S.: Surrey university library for forensic analysis (SULFA) of video content. In: IET Conference on Image Processing (IPR), pp. 1–6 (2012). https://doi.org/10.1049/cp.2012.0422,. http://sulfa.cs.surrey.ac.uk/index.php

  10. Shi, Y., Qi, M., Yi, Y., Zhang, M., Kong, J.: Object based dual watermarking for video authentication. Optik - Int. J. Light Electron Opt. 124(19), 3827–3834 (2013). https://doi.org/10.1016/j.ijleo.2012.11.078

    Article  Google Scholar 

  11. Singh, R.D., Aggarwal, N.: Video content authentication techniques: a comprehensive survey. Multimedia Syst. 24(2), 211–240 (2018). https://doi.org/10.1007/s00530-017-0538-9

    Article  Google Scholar 

  12. Sitara, K., Mehtre, B.: Digital video tampering detection: an overview ofpassive techniques. Digital Investig. 18(Supplement C), 8–22 (2016). https://doi.org/10.1016/j.diin.2016.06.003

    Article  Google Scholar 

  13. Sohn, H., Neve, W.D., Ro, Y.M.: Privacy protection in video surveillancesystems: analysis of subband-adaptive scrambling in JPEG XR. IEEE Trans. Circuits Syst. Video Technol. 21(2), 170–177 (2011). https://doi.org/10.1109/TCSVT.2011.2106250. http://ivylab.kaist.ac.kr/demo/vs/dataset.htm

    Article  Google Scholar 

  14. Ulutas, G., Ustubioglu, B., Ulutas, M., Nabiyev, V.: Frameduplication/mirroring detection method with binary features. IET Image Process. 11(5), 333–342 (2017). https://doi.org/10.1049/iet-ipr.2016.0321

    Article  Google Scholar 

  15. Ulutas, G., Ustubioglu, B., Ulutas, M., Nabiyev, V.V.: Frame duplication detection based on bow model. Multimedia Syst. 24(5), 549–567 (2018). https://doi.org/10.1007/s00530-017-0581-6

    Article  Google Scholar 

  16. Wahab, A.W.A., Bagiwa, M.A., Idris, M.Y.I., Khan, S., Razak, Z., Ariffin, M.R.K.: Passive video forgery detection techniques: a survey. In: 10th International Conference on Information Assurance and Security, pp. 29–34. IEEE (2014). https://doi.org/10.1109/ISIAS.2014.7064616

  17. Wang, W., Jiang, X., Wang, S., Wan, M., Sun, T.: Identifying video forgery process using optical flow. In: Shi, Y.Q., Kim, H.-J., Pérez-González, F. (eds.) IWDW 2013. LNCS, vol. 8389, pp. 244–257. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43886-2_18

    Chapter  Google Scholar 

  18. Wang, W., Farid, H.: Exposing digital forgeries in video by detecting duplication. In: Proceedings of the 9th workshop on Multimedia and Security, pp. 35–42. ACM, Dallas, Texas (2007)

    Google Scholar 

  19. Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002). https://doi.org/10.1109/97.995823

    Article  Google Scholar 

  20. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  21. Zahir, S.A., Kashanchi, F.: A new image quality measure. In: 2013 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–5 (2013). https://doi.org/10.1109/CCECE.2013.6567730

  22. Zhao, D.N., Wang, R.K., Lu, Z.M.: Inter-frame passive-blind forgery detection for video shot based on similarity analysis. Multimedia Tools and Applications (2018). https://doi.org/10.1007/s11042-018-5791-1

    Article  Google Scholar 

  23. Zheng, L., Sun, T., Shi, Y.-Q.: Inter-frame video forgery detection based on block-wise brightness variance descriptor. In: Shi, Y.-Q., Kim, H.J., Pérez-González, F., Yang, C.-N. (eds.) IWDW 2014. LNCS, vol. 9023, pp. 18–30. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19321-2_2

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [grant numbers 61471141, 61361166006, 61301099]; Key Technology Program of Shenzhen, China, [grant number JSGG20160427185010977]; Basic Research Project of Shenzhen, China [grant number JCYJ20150513151706561].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sondos Fadl or Qi Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fadl, S., Han, Q., Li, Q. (2019). Surveillance Video Authentication Using Universal Image Quality Index of Temporal Average. In: Yoo, C., Shi, YQ., Kim, H., Piva, A., Kim, G. (eds) Digital Forensics and Watermarking. IWDW 2018. Lecture Notes in Computer Science(), vol 11378. Springer, Cham. https://doi.org/10.1007/978-3-030-11389-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11389-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11388-9

  • Online ISBN: 978-3-030-11389-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics