Abstract
The study of recommender systems is essential nowadays due to its great effect on businesses and customer satisfaction. Different active learning strategies were previously developed to gain ratings from the users on specific items, and this enables the system to have more information and consequently make more accurate recommendations. In previous studies, these strategies were evaluated using a different selection of metrics in each work, and the experimentations were done on different datasets. In this paper, we solve these weaknesses by comparing the main ten non-personalized strategies on a fair ground, by simulating them against two datasets and using seven of the mostly agreed upon metrics. This gives more trust and less biased results when comparing their performances. Also, the analysis of the computation time and the elicitation efficiency is added.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 73–105. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_3
de Gemmis, M., Lops, P., Musto, C., Narducci, F., Semeraro, G.: Semantics-aware content-based recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 119–159. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_4
Wang, Y., Chan, S.C.-F., Ngai, G.: Applicability of demographic recommender system to tourist attractions: a case study on trip advisor. In: Proceedings of the 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology, WI-IAT 2012, vol. 03, pp. 97–101. IEEE Computer Society, Washington, DC (2012)
Beliakov, G., Calvo, T., James, S.: Aggregation functions for recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 777–808. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_23
Burke, R.: Knowledge-based recommender systems (2000)
Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: Constraint-based recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 161–190. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_5
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)
Koren, Y., Bell, R.: Advances in collaborative filtering. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 77–118. Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6_3
Desrosiers, C., Karypis, G.: A comprehensive survey of neighborhood-based recommendation methods. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 107–144. Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-3_4
Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adap. Inter. 12(4), 331–370 (2002)
Degemmis, M., Lops, P., Semeraro, G.: A content-collaborative recommender that exploits wordnet-based user profiles for neighborhood formation. User Model. User-Adap. Inter. 17(3), 217–255 (2007)
Adomavicius, G., Kwon, Y.: Multi-criteria recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 847–880. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_25
Elahi, M., Ricci, F., Repsys, V.: System-wide effectiveness of active learning in collaborative filtering. In: Bonchi, F., Buntine, W., Gavald, R., Gu, S. (eds.) International Workshop on Social Web Mining, Co-located with IJCAI, Universitat de Barcelona, Spain, p. 1 (2011)
Kutty, S., Yu, F.: Recommendations and predictions with ET greedy active learning. Technical report, Electrical Engineering and Computer Science Department of University of Michigan (2009)
Elahi, M., Ricci, F., Rubens, N.: A survey of active learning in collaborative filtering recommender systems. Comput. Sci. Rev. 20, 29–50 (2016)
Kohrs, A., Merialdo, B.: Improving collaborative filtering for new users by smart object selection. In: Proceedings of International Conference on Media Features, ICMF (2001)
Rubens, N., Sugiyama, M.: Influence-based collaborative active learning. In: Proceedings of the 2007 ACM Conference on Recommender Systems, RecSys 2007, pp. 145–148. ACM, New York (2007)
Rashid, A.M., et al.: Getting to know you: learning new user preferences in recommender systems. In: Proceedings of the 7th International Conference on Intelligent User Interfaces, IUI 2002, pp. 127–134. ACM, New York (2002)
Rashid, A.M., Karypis, G., Riedl, J.: Learning preferences of new users in recommender systems: an information theoretic approach. ACM SIGKDD Explor. Newsl. 10, 90–100 (2008)
Golbandi, N., Koren, Y., Lempel, R.: On bootstrapping recommender systems. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM 2010, pp. 1805–1808. ACM, New York (2010)
Liu, N.N., Meng, X., Liu, C., Yang, Q.: Wisdom of the better few: cold start recommendation via representative based rating elicitation. In: Proceedings of the 2011 ACM Conference on Recommender Systems, RecSys 2011, Chicago, IL, USA, pp. 37–44 (2011)
Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. ACM Trans. Interact. Intell. Syst. 5(4), 19 (2015)
Elahi, M., Repsys, V., Ricci, F.: Rating elicitation strategies for collaborative filtering. In: Huemer, C., Setzer, T. (eds.) EC-Web 2011. LNBIP, vol. 85, pp. 160–171. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23014-1_14
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, CSCW 1994, pp. 175–186. ACM, New York (1994)
Massa, P., Avesani, P.: Trust metrics in recommender systems. In: Golbeck, J. (ed.) Computing with Social Trust, pp. 259–285. Springer, London (2009). https://doi.org/10.1007/978-1-84800-356-9_10
Schröder, G., Thiele, M., Lehner, W.: Setting goals and choosing metrics for recommender system evaluations. In: UCERSTI2 Workshop at the 5th ACM Conference on Recommender Systems, Chicago, USA (2011)
del Olmo, F.H., Gaudioso, E.: Evaluation of recommender systems: a new approach. Expert Syst. Appl. 35(3), 790–804 (2008)
Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)
Powers, D.M.: Evaluation: from precision, recall and f-factor to roc, informedness, markedness and correlation. Technical report, School of Informatics and Engineering, Flinders University Adelaide, South Australia (2007)
Hossein, M., Shahraki, N., Bahadorpour, M.: Cold-start problem in collaborative recommender systems: efficient methods based on ask-to-rate technique. J. Comput. Inf. Technol. - CIT 22(2), 105–113 (2014)
Chaaya, G., Metais, E., Bou Abdo, J., Chiky, R., Demerjian, J., Barbar, K.: Evaluating non-personalized single-heuristic active learning strategies for collaborative filtering recommender systems. In: 16th IEEE International Conference on Machine Learning and Applications, Cancun, Mexico (2017)
Shani, G., Gunawardana, A.: Evaluating recommendation systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, Paul B. (eds.) Recommender Systems Handbook, pp. 257–297. Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-3_8
Chaaya, G., Bou Abdo, J., Demerjian, J., Chiky, R., Metais, E., Barbar, K.: An improved non-personalized combined-heuristic strategy for collaborative filtering recommender systems. In: IEEE Middle East & North Africa COMMunications Conference, MENACOMM (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Chaaya, G., Abdo, J.B., Métais, E., Chiky, R., Demerjian, J., Barbar, K. (2019). Comparison of the Non-personalized Active Learning Strategies Used in Recommender Systems. In: Themistocleous, M., Rupino da Cunha, P. (eds) Information Systems. EMCIS 2018. Lecture Notes in Business Information Processing, vol 341. Springer, Cham. https://doi.org/10.1007/978-3-030-11395-7_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-11395-7_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11394-0
Online ISBN: 978-3-030-11395-7
eBook Packages: Computer ScienceComputer Science (R0)