Skip to main content

Deep Learning for Brain Computer Interfaces

  • Chapter
  • First Online:
Handbook of Deep Learning Applications

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 136))

Abstract

From playing games with just the mind to capturing and re-constructing dreams, Brain computer Interfaces (BCIs) have turned fiction into reality. It has set new standards in the world of prosthetics, be it hearing aids or prosthetic arms, legs or vision, helping paralyzed or completely locked-in users. Not only can one get a visual imprint of their own brain activity but the future of BCI will make sharing someone else’s experience possible. The entire functioning of the BCI can be segmented into acquiring the signals, processing it, translation of signals, device that gives the output and the protocol in operation. The translation algorithms can be classical statistical analysis or non-linear methods such as neural networks. Deep learning might serve as one of the translation algorithms that converts the raw signals from the brain into commands that the output devices follow. This chapter aims to give an insight into the various deep learning algorithms that have served in BCI’s today and helped enhance their performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Schalk, G. Schalk, D.J. McFarland et al., BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51, 1034–1043 (2004). https://doi.org/10.1109/tbme.2004.827072

    Article  Google Scholar 

  2. J.R. Wolpaw, D.J. McFarland, G.E. Fabiani et al., Conversion of EEG activity into cursor movement by a brain-computer interface (BCI). IEEE Trans. Neural Syst. Rehabil. Eng. 12, 331–338 (2004). https://doi.org/10.1109/tnsre.2004.834627

    Article  Google Scholar 

  3. D. Marshall, D. Marshall, D. Coyle et al., Games, gameplay, and BCI: the state of the art. IEEE Trans. Comput. Intell. AI Games 5, 82–99 (2013). https://doi.org/10.1109/tciaig.2013.2263555

    Article  Google Scholar 

  4. K.R. Müller, M. Tangermann, G. Dornhege et al., Machine learning for real-time single-trial EEG-analysis: from brain–computer interfacing to mental state monitoring. J. Neurosci. Methods 167, 82–90 (2008). https://doi.org/10.1016/j.jneumeth.2007.09.022

    Article  Google Scholar 

  5. C. Guger, G. Pfurtscheller, W. Harkam, C. Hertnaes, Prosthetic control by an EEG-based brain-computer interface (BCI), in Proceedings of AAATE 5th European Conference for the Advancement of Assistive Technology, pp. 3–6 (1999)

    Google Scholar 

  6. F. Akram, S.M. Han, T.S. Kim, An efficient word typing P300-BCI system using a modified T9 interface and random forest classifier. Comput. Biol. Med. 56, 30–36 (2015). https://doi.org/10.1016/j.compbiomed.2014.10.021

    Article  Google Scholar 

  7. J.R. Wolpaw, N. Birbaumer, W.J. Heetderks et al., Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Rehabil. Eng. 8, 164–173 (2000). https://doi.org/10.1109/tre.2000.847807

    Article  Google Scholar 

  8. F. Lotte, M. Congedo, A. Lécuyer et al., A review of classification algorithms for EEG-based brain–computer interfaces. J. Neural Eng. 4, R1–R13 (2007). https://doi.org/10.1088/1741-2560/4/2/r01

    Article  Google Scholar 

  9. V. Shenoy Handiru, V.S. Handiru, A.P. Vinod, C. Guan, EEG source space analysis of the supervised factor analytic approach for the classification of multi-directional arm movement. J. Neural Eng. 14, 046008 (2017). https://doi.org/10.1088/1741-2552/aa6baf

    Article  Google Scholar 

  10. J.R. Wolpaw, G. Pfurtscheller, N. Birbaumer et al., Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002). https://doi.org/10.1016/s1388-2457(02)00057-3

    Article  Google Scholar 

  11. I. Sutskever, A. Krizhevsky, G.E. Hinton, ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  12. S.S. Roy, R. Roy, V.E. Balas, Estimating heating load in buildings using multivariate adaptive regression splines, extreme learning machine, a hybrid model of MARS and ELM. Renew. Sustain. Energ. Rev. 82, 4256–4268 (2018)

    Google Scholar 

  13. S.S. Roy, P. Kulshrestha, P. Samui, Classifying images of drought-affected area using deep belief network, kNN, and random forest learning techniques, Deep Learning Innovations and Their Convergence With Big Data, pp. 102–119. IGI Global

    Google Scholar 

  14. S.S. Roy, A. Mallik, R. Gulati, M.S. Obaidat, P.V. Krishna, A deep learning based artificial neural network approach for intrusion detection, in International Conference on Mathematics and Computing (Springer, Singapore, 2017)

    Google Scholar 

  15. S.S. Roy, V.M. Viswanatham, Classifying spam emails using artificial intelligent techniques. Int. J. Eng. Res. Africa 22 (2016)

    Article  Google Scholar 

  16. G. Pfurtscheller, C. Neuper, Motor imagery and direct brain-computer communication. Proc. IEEE 89, 1123–1134 (2001). https://doi.org/10.1109/5.939829

    Article  Google Scholar 

  17. A. Bandhu, S.S. Roy, Classifying multi-category images using deep learning: a convolutional neural network model, in 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), pp. 915–919, May, 2017. IEEE

    Google Scholar 

  18. S. Sakhavi, S. Sakhavi, C. Guan et al., Learning temporal information for brain-computer interface using convolutional neural networks. IEEE Trans. Neural Netw. Learn. Syst. 1–11. https://doi.org/10.1109/tnnls.2018.2789927

    Article  MathSciNet  Google Scholar 

  19. H. Cecotti, A. Graeser, Convolutional neural network with embedded Fourier transform for EEG classification. IEEE, pp. 1–4 (2008)

    Google Scholar 

  20. P. Bashivan, I. Rish, M. Yeasin, N. Codella, Learning representations from EEG with deep recurrent-convolutional neural networks (2015). arXiv:1511.06448

  21. C. Guan, S. Sakhavi, Convolutional neural network-based transfer learning and knowledge distillation using multi-subject data in motor imagery BCI. IEEE, pp. 588–591 (2017)

    Google Scholar 

  22. C.W. Anderson, Z. Sijercic, Classification of EEG signals from four subjects during five mental tasks, pp. 407–414 (1996)

    Google Scholar 

  23. Z.A. Keirn, Z.A. Keirn, J.I. Aunon, J.I. Aunon, A new mode of communication between man and his surroundings. IEEE Trans. Biomed. Eng. 37, 1209–1214 (1990). https://doi.org/10.1109/10.64464

    Article  Google Scholar 

  24. R.T. Schirrmeister, J.T. Springenberg, L.D.J. Fiederer et al., Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38, 5391–5420 (2017). https://doi.org/10.1002/hbm.23730

    Article  Google Scholar 

  25. H. Cecotti, H. Cecotti, A. Graser, A. Gräser, Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE Trans. Pattern Anal. Mach. Intell. 33, 433–445 (2011). https://doi.org/10.1109/tpami.2010.125

    Article  Google Scholar 

  26. H. Cecotti, A time–frequency convolutional neural network for the offline classification of steady-state visual evoked potential responses. Pattern Recogn. Lett. 32, 1145–1153 (2011). https://doi.org/10.1016/j.patrec.2011.02.022

    Article  Google Scholar 

  27. S. Stober, D.J. Cameron, J.A. Grahn, Using convolutional neural networks to recognize rhythm stimuli from electroencephalography recordings, in Neural Information Processing Systems (NIPS), pp. 1–9 (2014)

    Google Scholar 

  28. M. Hajinoroozi, Z. Mao, Y. Huan, Prediction of driver’s drowsy and alert states from EEG signals with deep learning. IEEE, pp. 493–496 (2015)

    Google Scholar 

  29. H. Yang, Y. Huijuan, S. Sakhavi et al., On the use of convolutional neural networks and augmented CSP features for multi-class motor imagery of EEG signals classification. IEEE, pp. 2620–2623 (2015)

    Google Scholar 

  30. A. Phadtare, A. Bahmani, A. Shah, R. Pietrobon, Scientific writing: a randomized controlled trial comparing standard and on-line instruction. BMC Med. Educ. 9, 27 (2009). https://doi.org/10.1186/1472-6920-9-27

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjiban Sekhar Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bose, A., Roy, S.S., Balas, V.E., Samui, P. (2019). Deep Learning for Brain Computer Interfaces. In: Balas, V., Roy, S., Sharma, D., Samui, P. (eds) Handbook of Deep Learning Applications. Smart Innovation, Systems and Technologies, vol 136. Springer, Cham. https://doi.org/10.1007/978-3-030-11479-4_15

Download citation

Publish with us

Policies and ethics