Skip to main content

Applications of Deep Learning in Medical Imaging

  • Chapter
  • First Online:
Handbook of Deep Learning Applications

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 136))

Abstract

Deep Learning techniques have recently been widely used for medical image analysis, which has shown encouraging results especially for large datasets. In particular, convolutional neural network has shown better capabilities to segment and/or classify medical images like ultrasound and CT scan images in comparison to previously used conventional machine learning techniques. This chapter includes applications of deep learning techniques in two different image modalities used in medical image analysis domain. The application of convolutional neural network in medical images is shown using ultrasound images to segment a collection of nerves known as Brachial Plexus. Deep learning technique is also applied to classify different stages of diabetic retinopathy using color fundus retinal photography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel, Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  2. S.C.B. Lo, H.P. Chan, J.S. Lin, H. Li, M.T. Freedman, S.K. Mun, Artificial convolution neural network for medical image pattern recognition. Neural Netw. 8(7), 1201–1214 (1995)

    Article  Google Scholar 

  3. A.I. Krizhevsky, S.G. Hinton, Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1106–1114 (2012)

    Google Scholar 

  4. M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe, S. Mougiakakou, Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 35(5), 1207–1216 (2016)

    Article  Google Scholar 

  5. T. Liu, S. Xie, J. Yu, L. Niu, W. Sun, Classification of thyroid nodules in ultrasound images using deep model based transfer learning and hybrid features, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, USA, 2017 (2017), pp. 919–923

    Google Scholar 

  6. A. Rajkomar, S. Lingam, A.G. Taylor, High-throughput classification of radiographs using deep convolutional neural networks. J. Digit. Imaging 30(1), 95–101 (2017)

    Article  Google Scholar 

  7. S. Pereira, A. Pinto, V. Alves, C.A. Silva, Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)

    Article  Google Scholar 

  8. H.R. Roth, A. Farag, L. Lu, E.B. Turkbey, R.M. Summers, Deep convolutional networks for pancreas segmentation in CT imaging. Proc. SPIE Medical Imaging pp. 94–131 (2015)

    Google Scholar 

  9. D. Ciresan, A. Giusti, L.M. Gambardella, J. Schmidhuber, Deep neural networks segment neuronal membranes in electron microscopy images, in Advances in Neural Information Processing Systems, vol. 25 (Red Hook, NY, 2012), pp. 2843–2851

    Google Scholar 

  10. D.A. Pollen, S.F. Ronner, Visual cortical neurons as localized spatial frequency filters. IEEE Trans. Syst. Man Cybern. 13(5), 907–916 (1983)

    Article  Google Scholar 

  11. I. Pitas, A.N. Venetsanopoulos, Edge detectors based on nonlinear filters. IEEE Trans. Pattern Anal. Mach. Intell. 4, 538–550 (1986)

    Article  Google Scholar 

  12. D. Scherer, A. Müller, S. Behnke, Evaluation of pooling operations in convolutional architectures for object recognition, in Artificial Neural Networks—ICANN 2010. Lecture Notes in Computer Science, ed. by K. Diamantaras, W. Duch, L.S. Iliadis, vol. 6354 (Springer, Berlin, Heidelberg, 2010)

    Chapter  Google Scholar 

  13. H. Guo, S.B. Gelfand, Analysis of gradient descent learning algorithms for multilayer feedforward neural networks. IEEE Trans. Circuits Syst. 38(8), 883–894 (1991)

    Article  Google Scholar 

  14. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Darrell, Caffe: convolutional architecture for fast feature embedding. arXiv:1408.5093 (2014)

  15. M. Li, T. Zhang, Y. Chen, A. Smola, Efficient mini-batch training for stochastic optimization, in ACM SIGKDD Conference on Knowledge Discovery and Data Mining (2014)

    Google Scholar 

  16. A. Von Lehmen, E.G. Paek, P.F. Liao, A. Marrakchi, J.S. Patel, Factors influencing learning by backpropagation, in IEEE International Conference on Neural Networks, San Diego, CA, USA, vol. 1 (1988), pp. 335–341

    Google Scholar 

  17. http://www.assh.org/handcare/hand-arm-injuries/Brachial-Plexus-Injury#prettyPhoto

  18. K. Saladin, Anatomy and Physiology, 7 edn. (McGraw Hill, New York 2015), pp. 489–491

    Google Scholar 

  19. F. Lapegue, M. Faruch-Bilfeld, X. Demondion, C. Apredoaei, M.A. Bayol, H. Artico, H. Chiavassa-Gandois, J.J. Railhac, N. Sans, Ultrasonography of the brachial plexus, normal appearance and practical applications. Diagn. Interv. Imaging 95(3), 259–275 (2014)

    Article  Google Scholar 

  20. A. Perlas, V.W.S. Chan, M. Simons, Brachial plexus examination and localization using ultrasound and electrical stimulation: a volunteer study. Anesthes 99(2), 429–435 (2003)

    Article  Google Scholar 

  21. Ultrasound Nerve Segmentation Challenge, https://www.kaggle.com/c/ultrasound-nerve-segmentation/data (2016)

  22. O. Ronneberger, P. Fischer, T. Brox, U-Net: convolutional networks for biomedical image segmentation. arXiv:1505.04597 [cs] (2015)

    Google Scholar 

  23. Cell Tracking Challenge, http://www.codesolorzano.com/Challenges/CTC/Welcome.html (2017)

  24. H. Ide, T. Kurita, Improvement of learning for CNN with ReLU activation by sparse regularization, in International Joint Conference on Neural Networks, Anchorage, AK, USA (2017), pp. 2684–2691

    Google Scholar 

  25. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  26. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 1–9

    Google Scholar 

  27. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas (2016), pp. 2818–2826

    Google Scholar 

  28. A.A. Taha, A. Hanbury, Metrics for evaluating 3D medical image segmentation: analysis selection and tool. BMC Med. Imaging 15(1), 15–29 (2015)

    Article  Google Scholar 

  29. R. Williams, M. Airey, H. Baxter, J. Forrester, T. Kennedy-Martin, A. Girach, Epidemiology of diabetic retinopathy and macular oedema: a systematic review. Eye 18(10), 963–983 (2004)

    Article  Google Scholar 

  30. J. Cornwall, S.A. Kaveeshwar, The current state of diabetes mellitus in India. Australas. Med. J. 45–48 (2014)

    Google Scholar 

  31. Diabetic Retinopathy Detection Challenge, https://www.kaggle.com/c/diabetic-retinopathy-detection (2015)

  32. K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. arXiv:1502.01852 (2015)

  33. N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  34. P. Baldi, P.J. Sadowski, Understanding dropout, in Advances in Neural Information Processing Systems, ed. by C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, K.Q. Weinberger, vol. 26 (2013), pp. 2814–2822

    Google Scholar 

  35. C. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics) (Springer, New York, 2006)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Kaggle for making the ultrasound nerve segmentation and diabetic retinopathy detection datasets publicly available. Thanks to California Healthcare Foundation for sponsoring the diabetic retinopathy detection competition and EyePacs for providing the retinal images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjit Maitra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maitra, S., Ghosh, R., Ghosh, K. (2019). Applications of Deep Learning in Medical Imaging. In: Balas, V., Roy, S., Sharma, D., Samui, P. (eds) Handbook of Deep Learning Applications. Smart Innovation, Systems and Technologies, vol 136. Springer, Cham. https://doi.org/10.1007/978-3-030-11479-4_6

Download citation

Publish with us

Policies and ethics