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Abstract. Let S be a set of n points and let w be a function that assigns non-negative weights
to points in S. The additive weighted distance dw(p, q) between two points p, q ∈ S is defined as
w(p) + d(p, q) + w(q) if p 6= q and it is zero if p = q. Here, d(p, q) is the geodesic Euclidean distance
between p and q. For a real number t > 1, a graph G(S,E) is called a t-spanner for the weighted set S of
points if for any two points p and q in S the distance between p and q in graph G is at most t.dw(p, q) for
a real number t > 1. For some integer k ≥ 1, a t-spanner G for the set S is a (k, t)-vertex fault-tolerant

additive weighted spanner, denoted with (k, t)-VFTAWS, if for any set S′ ⊂ S with cardinality at most
k, the graph G \ S′ is a t-spanner for the points in S \ S′. For any given real number ǫ > 0, we present
algorithms to compute a (k, 4+ ǫ)-VFTAWS for the metric space (S, dw) resulting from the points in S

belonging to any of the following: Rd, simple polygon, polygonal domain, and terrain. Note that d(p, q)
is the geodesic Euclidean distance between p and q in the case of simple polygons and terrains whereas
in the case of Rd it is the Euclidean distance along the line segment joining p and q.
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1 Introduction

When designing geometric networks on a given set of points in a metric space, it is desirable for the network
to have short paths between any pair of nodes while being sparse with respect to the number of edges. Let
G(S,E) be an edge-weighted geometric graph on a set S of n points in R

d. The weight of any edge (p, q) ∈ E
is the Euclidean distance |pq| between p and q. The distance in G between any two nodes p and q, denoted
by dG(p, q), is defined as the length of a shortest (that is, minimum-weighted) path between p and q in G.
The graph G is called a t-spanner for some t ≥ 1 if for any two points p, q ∈ S we have dG(p, q) ≤ t.|pq|. The
smallest t for which G is a t-spanner is called the stretch factor of G, and the number of edges of G is called
its size.

Peleg and Schäffer [40] introduced spanners in the context of distributed computing and by Chew [27]
in a geometric context. Althöfer et al. [9] first attempted to study sparse spanners on edge-weighted graphs
that have the triangle-inequality property. The text by Narasimhan and Smid [39], handbook chapter [31],
and Gudmundsson and Knauer [32] detail various results on Euclidean spanners, including a (1+ ǫ)-spanner
for the set S of n points in R

d that has O( n
ǫd−1 ) edges for any ǫ > 0.

Many variations of sparse spanners have been studied, including spanners of low degree [11,25,18,42],
spanners of low weight [17,30,33], spanners of low diameter [14,13], planar spanners [10,27,29,36], spanners
of low chromatic number [16], fault-tolerant spanners [3,28,37,38,35,43], low power spanners [7,41,45], kinetic
spanners [2,5], angle-constrained spanners [26], and combinations of these [12,15,21,22,23,24]. When the
doubling dimension of a metric space is bounded, results applicable to the Euclidean settings are given in
[44].

As mentioned in Abam et al., [4], the cost of traversing a path in a network is not only determined by
the lengths of the edges on the path but also by the delays occurring at the nodes on the path. The result in
[4] models these delays with the additive weighted metric. Let S be a set of n points in R

d. For every p ∈ S,
let w(p) be the non-negative weight associated to p. The following additive weighted distance function dw
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on S defining the metric space (S, dw) is considered in [4]: for any p, q ∈ S, dw(p, q) equals to 0 if p = q;
otherwise, it is equal to w(p) + |pq|+ w(q).

Recently, Abam et al. [6] showed that there exists a (2 + ǫ)-spanner with a linear number of edges
for the metric space (S, dw) that has bounded doubling dimension in [34].And, [4] gives a lower bound on
the stretch factor, showing that (2 + ǫ) stretch is nearly optimal. Bose et al. [19] studied the problem of
computing spanners for a weighted set of points. They considered the points that lie on the plane to have
positive weights associated to them; and defined the distance dw between any two distinct points p, q ∈ S as
d(p, q) − w(p) − w(q). Under the assumption that the distance between any pair of points is non-negative,
they showed the existence of a (1 + ǫ)-spanner with O(n

ǫ
) edges.

A simple polygon PD containing h ≥ 0 number of disjoint simple polygonal holes within it is termed the
polygonal domain D. (When h equals to 0, the polygonal domain D is a simple polygon.) The free space
F(D) of the given polygonal domain D is defined as the closure of PD excluding the union of the interior
of polygons contained in PD. Essentially, a path between any two given points in F(D) needs to be in the
free space F(D) of D. Given a set S of n points in the free space F(D) defined by the polygonal domain D,
computing geodesic spanners in F(D) is considered in Abam et al. [1]. For any two distinct points p, q ∈ S,
dπ(p, q) is defined as the geodesic Euclidean distance along a shortest path π(p, q) between p and q in F(D).
[1] showed that for the metric space (S, π), for any constant ǫ > 0, there exists a (5 + ǫ)-spanner of size
O(

√
hn(lg n)2). Further, for any constant ǫ > 0, [1] gave a (

√
10 + ǫ)-spanner with O(n(lg n)2) edges when

h = 0 i.e., the polygonal domain is a simple polygon with no holes. Given a set S of n points on a polyhedral
terrain T , the geodesic Euclidean distance between any two points p, q ∈ S is the distance along any shortest
path between p and q on T . [6] showed that for a set of unweighted points on a polyhedral terrain, for any
constant ǫ > 0, there exists a (2 + ǫ)-geodesic spanner with O(n lg n) edges.

For a network to be vertex fault-tolerant, i.e., when a subset of nodes is removed, the induced network on
the remaining nodes requires to be connected. Formally, a graphG(S,E) is a k-vertex fault-tolerant t-spanner,
denoted by (k, t)-VFTS, for a set S of n points in R

d if for any subset S′ of S with size at most k, the graph
G\S′ is a t-spanner for the points in S\S′. Algorithms in Levcopoulos et al., [37], Lukovszki [38], and Czumaj
and Zhao [28] compute a (k, t)-VFTS for the set S of points in R

d. These algorithms are also presented in [39].
[37] devised an algorithm to compute a (k, t)-VFTS of size O( n

(t−1)(2d−1)(k+1) ) in O( n lgn

(t−1)4d−1 +
n

(t−1)(2d−1)(k+1) )

time and another algorithm to compute a (k, t)-VFTS with O(k2n) edges in O( kn lgn

(t−1)d
) time. [38] gives an

algorithm to compute a (k, t)-VFTS of size O( kn
(t−1)d−1 ) in O( 1

(t−1)d
(n lgd−1 n lg k + kn lg lg n)) time. The

algorithm in [28] computes a (k, t)-VFTS having O( kn
(t−1)d−1 ) edges in O( 1

(t−1)d−1 (kn lgd n+ nk2 lg k)) time

with total weight of edges upper bounded by a O( k2 lgn
(t−1)d ) multiplicative factor of the weight of MST of the

given set of points.

For a real number t > 1, a graph G(S,E) is called a t-spanner for the weighted set S of points if for any
two points p and q in S the distance between p and q in graph G is at most t.dw(p, q) for a real number
t > 1. For some integer k ≥ 1, a t-spanner G for the set S is a (k, t)-vertex fault-tolerant additive weighted
spanner, denoted with (k, t)-VFTAWS, if for any set S′ ⊂ S with cardinality at most k, the graph G \ S′ is
a t-spanner for the points in S \ S′.

Our results. The spanners computed in this paper are first of their kind as we combine fault-tolerance with
the additive weighted set of points. We devise the following algorithms for computing vertex fault-tolerant
additive weighted geometric spanners (VFTAWS) for any ǫ > 0 and k ≥ 1:

* Given a set S of n weighted points in R
d, our first algorithm presented herewith computes a (k, 4 + ǫ)-

VFTAWS having O(kn) edges. We incorporate fault-tolerance to the recent results of [6] while retaining
the same stretch factor and increasing the number of edges in the spanner by a multiplicative factor of
O(k).

* Given a set S of n weighted points in a simple polygon, we present an algorithm to compute a (k, 4+ ǫ)-
VFTAWS that has O(kn

ǫ2
lgn) edges. Our algorithm combines the clustering based algorithms from [1]

and [4], and with the careful addition of more edges, we show that k fault-tolerance is achieved.
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* Given a set S of n weighted points in a polygonal domain, we compute a (k, 4 + ǫ)-VFTAWS having

O(k
√
hn

ǫ2
lg n) edges. We extend the structures used in [1] to achieve the vertex fault-tolerance.

* Given a set S of n weighted points on a terrain, we computes a (k, 4 + ǫ)-VFTAWS having O(kn
ǫ2

lg n)
edges. For achieving the fault-tolerance, our algorithm adds a minimal set of edges to the spanner
constructed in [6].

Unless specified otherwise, the points are assumed to be in Euclidean space R
d. The Euclidean distance

between two points p and q is denoted by |pq|. The distance between two points p, q in the metric space X
is denoted by dX(p, q). The length of the shortest path between p and q in a graph G is denoted by dG(p, q).

Section 2 details the algorithm and its analysis to compute a (k, 4+ǫ)-VFTAWS when the input weighted
points are in R

d. For the input weighted points located in a simple polygon, Section 3 describes an algorithm
to compute a (k, 4 + ǫ)-VFTAWS. Section 4 details algorithm for (k, 4 + ǫ)-VFTAWS for a points located
in the polygonal domain. Section 5 presents an algorithm to compute a (k, 4 + ǫ)-VFTAWS when the input
points are located on a terrain. Conclusions are in Section 6.

2 Vertex fault-tolerant additive weighted spanner for points in R
d

In this section, we describe an algorithm to compute a (k, t)-VFTAWS for the set S of n non-negative
weighted points in R

d, where t > 1 and k ≥ 1 are real numbers. For any two points p, q ∈ S, the additive
weighted distance dw(p, q) is defined as the w(p) + |pq|+w(q). Following the algorithm mentioned in [6], we
first partition all the points belonging to S into at least k+1 clusters. For creating these clusters, the points
in set S are sorted in non-decreasing order with respect to their weights. Then the first k + 1 points in this
sorted list are chosen as the centers of k + 1 distinct clusters. As the algorithm progress, more points are
added to these clusters as well as more clusters (with cluster centers) may also be created. In any iteration
of the algorithm, for any point p in the remaining sorted list, among the current set of cluster centers, we
determine the cluster center cj nearest to p. Let Cj be the cluster to which cj is the center. It adds p to the
cluster Cj if |pcj | ≤ ǫ.w(p); otherwise, a new cluster Cp with p as its centre is initiated. Let C = {c1, . . . , cz}
be the final set of cluster centers obtained through this procedure. For every i ∈ [1, z], the cluster to which
ci is the center is denoted by Ci. Using the algorithm from [43], we compute a (k, (2 + ǫ))-VFTS B for the
set C of cluster centers. We note that the degree of each vertex of B is O(k). We denote the stretch of B by
tB. First, the graph G is initialized to B; further, points in S \C are included in G as vertices. Our algorithm
to compute a (k, 4 + ǫ)-VFTAWS differs from [6] with respect to both the algorithm used in computing B
and the set of edges added to B. The latter part is described now. For every i ∈ [1, z], let C′

i be the set
comprising of min{k + 1, |Ci|} least weighted points of cluster Ci. For each point p ∈ S \ C, if p belongs to
cluster Cl, then for each v ∈ Bl ∪C′

l , our algorithm introduces an edge between p and v with weight |pv| to
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G. Here, Bl is the set comprising of all the neighbors of the center (cl) of cluster Cl in the graph B. We state
our algorithm to compute a (k, (2 + ǫ))-vertex fault tolerant spanner(VFTS) for the set S.

Algorithm 1: k-ADDITIVEFTS(S, k, ǫ)

Input : The set S of n additive weighted points in R
d and an integer k ≥ 1 and a real number ǫ

lying in the range [ lg k
lg n

k+1+1 , 1] if n ≥ k(k + 1) else ǫ is in the range [k+1
n

, 1]

Output: (k, (4 + ǫ))-VFTS G
1: create the list P containing the points of S sorted in non-decreasing order of their weights
2: if n ≥ k(k + 1), then create n

k
1
ǫ

clusters; otherwise, create ǫ.n clusters

3: assign the first point q ∈ P to be the centre c1 of the first cluster C1 and set z to 1
4: add q to set C of cluster centres
5: for every point p ∈ P \ {q} do

6: find the cluster centre cj from the set C nearest to p
7: if |pcj | ≤ ǫ.w(p) then
8: add p to the cluster Cj

9: else

10: set z as z + 1
11: create a new cluster Cz and assign p as the centre cz of Cz

12: add p to the set C
13: end if

14: end for

15: construct a (k, (1 + ǫ))-VFTS B for the set C using the algorithm given in [43]
16: for every p ∈ S \ C do

17: find the cluster Cl to which p belongs; let cl be the centre of Cl

18: let C′
l be the set of min{k + 1, card(Cl)} least weighted points of cluster Cl; for every p′ ∈ C′

l ,
introduce an edge between p and p′

19: let Bl be the k nearest neighbors of cl in B; for every p′ ∈ Bl, introduce an edge between p and p′

20: end for

In the following theorem, we prove that the graph G is indeed a (k, 4 + ǫ)-VFTAWS with O(kn) edges.

Theorem 1. Let S be a set of n weighted points in R
d with non-negative weights associated to points with

weight function w. For any fixed constant ǫ > 0, the graph G is a (k, (4+ ǫ))-VFTAWS with O(kn) edges for
the metric space (S, dw).

Proof: From [43], the number of edges in B is O(k |C|), which is essentially O(kn). Further, the degree of
each node in B is O(k). From each point in S \C, we are adding at most O(k) edges. Hence, the number of
edges in G is O(kn).

In proving that G is a (k, 4 + ǫ)-VFTAWS for the metric space (S, dw), we show that for any set S′ ⊂ S
with |S′| ≤ k and for any two points p, q ∈ S \ S′ there exists a (4 + ǫ)-spanner path between p and q in
G \ S′. Following are the possible cases based on the role p and q play with respect to clusters formed and
their centers:
Case 1: Both p and q are cluster centres of two distinct clusters i.e., p, q ∈ C.
Since B is a (k, (2 + ǫ))-VFTS for the set C,

dG\S′(p, q) = dB\S′(p, q)

≤ tB · dw(p, q).

Case 2: Both p and q are in the same cluster Ci and one of them, w.l.o.g., say p, is the centre of Ci. Since p
is the least weighted point in Ci, there exists an edge joining p and q in G. Hence,

dG\S′(p, q) = dw(p, q).
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Case 3: Both p and q are in the same cluster, say Ci; p 6= ci, q 6= ci; and, ci /∈ S′. Then,

dG\S′(p, q) = dw(p, ci) + dw(ci, q)

= w(p) + |pci|+ w(ci) + w(ci) + |ciq|+ w(q)

≤ w(p) + ǫ · w(p) + w(ci) + w(ci) + ǫ · w(q) + w(q)

[since a point x is added to cluster Cl only if |xcl| ≤ ǫ · w(x)]
≤ w(p) + ǫ · w(p) + w(p) + w(q) + ǫ · w(q) + w(q)

[since the points are sorted in the non-decreasing order of their weights and the first

point added to any cluster is taken as its center]

= (2 + ǫ) · [w(p) + w(q)]

< (2 + ǫ) · [w(p) + |pq|+ w(q)]

= (2 + ǫ) · dw(p, q).

Case 4: Both p and q are in the same cluster, say Ci; p 6= ci, q 6= ci; and, ci ∈ S′.
In the case of |Ci| ≤ k, there exists an edge between p and q in G. Hence, suppose that |Ci| > k. Let S′′ be
the set of k + 1 least weighted points from Ci. If p, q ∈ S′′ then there exists an edge between p and q in G.
If p ∈ S′′ and q /∈ S′′ then as well there exists an edge between p and q. (Argument for the other case in
which q ∈ S′′ and p /∈ S′′ is analogous.) Now consider the case in which both p, q /∈ S′′. Since p and q are
connected to every point in S′′ and |S′′| = k+1, there exists an r ∈ S′′ such that r /∈ S′ and the edges (p, r)
and (r, q) belong to G \ S′. Therefore,

dG\S′(p, q) = dw(p, r) + dw(r, q)

= w(p) + |pr|+ w(r) + w(r) + |rq| + w(q)

≤ w(p) + |pci|+ |cir|+ w(r) + w(r) + |rci|+ |ciq|+ w(q)

[by triangle inequality]

≤ w(p) + ǫ · w(p) + ǫ · w(r) + w(r) + w(r) + ǫ · w(r) + ǫ · w(q) + w(q)

[since a point x is added to cluster Cl only if |xcl| ≤ ǫ · w(x)]
≤ w(p) + ǫ · w(p) + ǫ · w(p) + w(p) + w(q) + ǫ · w(q) + ǫ · w(q) + w(q)

[since for any point the edges are added to the k + 1 least weighted

points of the cluster to which it belongs]

= (2 + 2ǫ) · [w(p) + w(q)]

< (2 + 2ǫ) · [w(p) + |pq|+ w(q)]

= (2 + 2ǫ) · dw(p, q).

Case 5: Points p and q belong to two distinct clusters, say p ∈ Ci and q ∈ Cj . In addition, p 6= ci and q 6= cj ,
and neither of the cluster centres belong to S′.
Then,

dG\S′(p, q) = dw(p, ci) + dB(ci, cj) + dw(cj , q)

= w(p) + |pci|+ w(ci) + dB(ci, cj) + w(cj) + |cjq|+ w(q)

≤ w(p) + ǫ · w(p) + w(ci) + dB(ci, cj) + w(cj) + ǫ · w(q) + w(q)

[since a point x is added to cluster Cl only if |xcl| ≤ ǫ · w(x)]
≤ (1 + ǫ) · [w(p) + w(q)] + w(ci) + w(cj) + tB · dw(ci, cj)
[since B is a (k, tB)-vertex fault-tolerant spanner for the set C]
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≤ (1 + ǫ) · [w(p) + w(q)] + w(p) + w(q) + tB · dw(ci, cj)
[since the points are sorted in the non-decreasing order of their weights and the first

point added to any cluster is taken as center of that cluster]

= (2 + ǫ) · [w(p) + w(q)] + tB · [w(ci) + |cicj |+ w(cj)]

≤ (2 + ǫ) · [w(p) + w(q)] + tB · [w(p) + |cicj |+ w(q)]

[since the points are sorted in the non-decreasing order of their weights and the first

point added to any cluster is taken as its center]

≤ (2 + ǫ) · [w(p) + w(q)] + tB · [w(p) + w(q) + |cip|+ |pq|+ |qcj |]
[by triangle inequality]

≤ (2 + ǫ) · [w(p) + w(q)] + tB · [w(p) + w(q) + ǫ · w(p) + |pq|+ ǫ · w(q)]
[since a point x is added to cluster Cl only if |xcl| ≤ ǫ · w(x)]
= (2 + ǫ) · [w(p) + w(q)] + tB · [(1 + ǫ) · [w(p) + w(q)] + |pq|]
< (2 + ǫ) · [w(p) + w(q) + |pq|] + tB · (1 + ǫ) · [w(p) + w(q) + |pq|]
< tB(2 + ǫ) · [w(p) + w(q) + |pq|] when tB ≥ (2 + ǫ)

[since each point has non-negative weight associated with it]

= tB · (2 + ǫ) · dw(p, q).

Case 6: Both the points p and q are in two distinct clusters, w.l.o.g., say p ∈ Ci and q ∈ Cj , one of them,
say p is the centre of Ci (i.e., p = ci), and cj /∈ S′. Then,

dG\S′(p, q) = dB(ci, cj) + dw(cj , q)

≤ tB · dw(ci, cj) + dw(cj , q)

[since B is a (k, tB)-vertex fault-tolerant spanner for the set C]

= tB · dw(ci, cj) + w(cj) + |cjq|+ w(q)

= tB · [w(ci) + |cicj |+ w(cj)] + w(cj) + |cjq|+ w(q)

≤ tB · [w(p) + |cicj |+ w(q)] + w(q) + |cjq|+ w(q)

[since the points are sorted in the non-decreasing order of their weights and the first

point added to any cluster is taken as its center]

≤ tB · [w(p) + |cicj |+ w(q)] + w(q) + ǫ · w(q) + w(q)

[since a point x is added to cluster Cl only if |xcl| ≤ ǫ · w(x)]
≤ tB · [w(p) + |cip|+ |pq|+ |qcj |+ w(q)] + w(q) + ǫ · w(q) + w(q)

[by triangle inequality]

≤ tB · [w(p) + ǫ · w(p) + |pq|+ ǫ · w(q) + w(q)] + w(q) + ǫ · w(q) + w(q)

[since a point x is added to cluster Cl only if |xcl| ≤ ǫ.w(x)]

= tB · [(1 + ǫ) · [w(p) + w(q)] + |pq|] + (2 + ǫ) · w(q)
≤ tB · [(1 + ǫ) · [w(p) + w(q)] + |pq|] + (2 + ǫ) · [w(p) + w(q) + |pq|]
[since each point has non-negative weight associated with it]

≤ tB · (2 + ǫ) · [w(p) + w(q) + |pq|] when tB ≥ (2 + ǫ)

≤ tB · (2 + ǫ) · dw(p, q).

Case 7: Both the points p and q are in two distinct clusters, say p ∈ Ci and q ∈ Cj ; p 6= ci, q 6= cj ; and, one
of these centers, say cj , belongs to S′ and the other center ci /∈ S′. Since q is connected to all the neighbors
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of cj in B, for any neighbor cr of cj with cr ∈ C and cr /∈ S′, the edge (q, cr) belongs to G \ S′. Therefore,
dG\S′(p, q) = dw(p, ci) + dB(ci, cr) + dw(cr, q)

= w(p) + |pci|+ w(ci) + dB(ci, cr) + w(cr) + |crq|+ w(q)

≤ w(p) + ǫ · w(p) + w(ci) + dB(ci, cr) + w(cr) + |crq|+ w(q)

[since a point x is added to cluster Cl only if |xcl| ≤ ǫ · w(x)]
≤ w(p) + ǫ · w(p) + w(ci) + dB(ci, cr) + w(cr) + |crcj |+ |cjq|+ w(q)

[by triangle inequality]

≤ w(p) + ǫ · w(p) + w(ci) + dB(ci, cr) + w(cr) + |crcj |+ ǫ · w(q) + w(q)

[since a point x is added to cluster Cl only if |xcl| ≤ ǫ · w(x)]
≤ (1 + ǫ) · [w(p) + w(q)] + w(ci) + dB(ci, cr) + w(cr) + |cjcr|. (1)

Since B is a (k, tB)-VFTS, there are at least k + 1 vertex disjoint tB-spanner paths between cj and ci in B.
Suppose cr is the neighbor of cj in B such that one of these k+ 1 paths from cj to ci passes through cr. We
have the following:

dB(ci, cr) + dw(cr, cj) < tB · dw(ci, cj)
⇒ dB(ci, cr) + w(cr) + |crcj |+ w(cj) < tB · dw(ci, cj)
⇒ dB(ci, cr) + |crcj |+ w(cr) < tB · dw(ci, cj)− w(cj). (2)

Substituting (2) in (1),
dG\S′(p, q) < (1 + ǫ) · [w(p) + w(q)] + w(ci) + tB · dw(ci, cj)− w(cj)

≤ (1 + ǫ) · [w(p) + w(q)] + w(ci) + tB · dw(ci, cj)
[since weight associated with any point is non-negative]

= (1 + ǫ) · [w(p) + w(q)] + w(ci) + tB · [w(ci) + |cicj |+ w(cj)]

≤ (1 + ǫ) · [w(p) + w(q)] + w(p) + tB · [w(p) + |cicj |+ w(q)]

[since the points are sorted in the non-decreasing order of their weights and the first

point added to any cluster is taken as its center]

≤ (1 + ǫ) · [w(p) + w(q)] + w(p) + tB · [w(p) + |cip|+ |pq|+ |qcj |+ w(q)]

[by triangle inequality]

≤ (1 + ǫ) · [w(p) + w(q)] + w(p) + tB · [w(p) + ǫ · w(p) + |pq|+ ǫ · w(q) + w(q)]

[since a point x is added to cluster Cl only if |xcl| ≤ ǫ · w(x)]
≤ (2 + ǫ) · [w(p) + w(q)] + tB · [(1 + ǫ) · [w(p) + w(q)] + |pq|]
≤ tB · [(2 + ǫ) · [w(p) + w(q)] + |pq|] when tB ≥ (2 + ǫ)

≤ tB · (2 + ǫ) · [w(p) + w(q)] + tB[w(p) + |pq|+ w(q)]

[since weight associated with any point is non-negative]

≤ tB · (2 + ǫ) · dw(p, q).

Case 8: Points p and q are in two distinct clusters, say p ∈ Ci and q ∈ Cj ; p 6= ci, q 6= cj ; and both ci, cj ∈ S′.

Since p (resp. q) is connected to k nearest neighbor of ci (resp. cj), there exists cr, cl ∈ C such that cr, cl /∈ S′

and the edges (p, cr) and (cl, q) belong to G \ S′. Then,
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dG\S′(p, q) = dw(p, cr) + dB(cr, cl) + dw(cl, q)

= w(p) + |pcr|+ w(cr) + dB(cr, cl) + w(cl) + |clq|+ w(q)

≤ w(p) + |pci|+ |cicr|+ w(cr) + dB(cr, cl)

+ w(cl) + |cjcl|+ |cjq|+ w(q) (3)

[by triangle inequality].

Since B is a (k, tB)-VFTS, there are at least k + 1 vertex disjoint tB-spanner paths between cj and ci in B.
Suppose cr (resp. cl) is the neighbor of ci (resp. cj) in B such that one of these k + 1 paths from cj to ci
passes through cr (rsp. cl). We have the following:

dw(ci, cr) + dB(cr, cl) + dw(cl, cj) < tB · dw(ci, cj)
⇒ w(cr) + |cicr|+ w(ci) + dB(cr, cl) + w(cj) + |cjcl|+ w(cl) < tB · dw(ci, cj)
⇒ w(cr) + |cicr|+ dB(cr, cl) + w(cl) + |cjcl| < tB · dw(ci, cj)− w(ci)− w(cj). (4)

Substituting (4) in (3), we get
dG\S′(p, q) < w(p) + |pci|+ tB · dw(ci, cj)− w(ci)− w(cj) + |cjq|+ w(q)

≤ w(p) + |pci|+ tB · dw(ci, cj) + |cjq|+ w(q)

[since the weight associated with each point is non-negative]

= w(p) + |pci|+ tB · [w(ci) + |cicj |+ w(cj)] + |cjq|+ w(q)

≤ w(p) + |pci|+ tB · [w(ci) + |cip|+ |pq|+ |qcj |+ w(cj)] + |cjq|+ w(q)

[by triangle inequality]

≤ w(p) + ǫ · w(p) + tB · [w(ci) + ǫ · w(p) + |pq|+ ǫ · w(q) + w(cj)] + ǫ · w(q) + w(q)

[since a point x is added to cluster Cl only if |xcl| ≤ ǫ · w(x)]
≤ w(p) + ǫ · w(p) + tB · [w(p) + ǫ · w(p) + |pq|+ ǫ · w(q) + w(q)] + ǫ · w(q) + w(q)

[since the points are sorted in the non-decreasing order of their weights and the first

point added to any cluster is taken as its center]

≤ (1 + ǫ) · [w(p) + w(q)] + tB · [(1 + ǫ) · [w(p) + w(q)] + |pq|]
≤ tB · (2 + ǫ) · [w(p) + w(q) + |pq|] when tB ≥ (1 + ǫ)

= tB · (2 + ǫ) · dw(p, q).

Considering the analysis in all these cases proves that G is a k-VFTAWS with stretch t upper bounded by
tB · (2+ ǫ). We had chosen tB to be equal to (2+ ǫ), so that it satisfies all the above cases. Since tB is (2+ ǫ),
t = (2 + ǫ)2 ≤ (4 + 5ǫ). Hence, G is a (k, 4 + 5ǫ)-VFTAWS for the metric space (S, dw). ⊓⊔

3 Vertex fault-tolerant additive weighted spanner for points in simple polygon

Given a set S of n points in a simple polygon P , for any two points p, q ∈ S, the shortest path between p
and q in P is denoted by π(p, q), and the length of that path is indicated by dπ(p, q). For a t ≥ 1, a geodesic
t-spanner of S is a graph G(S,E′) such that dπ(p, q) ≤ dG(p, q) ≤ t · dπ(p, q) for every two points p, q ∈ S.
We detail an algorithm to compute a geodesic vertex fault-tolerant additive weighted spanner for the set S
of n weighted points located in a simple polygon P .

The following definition for the distance function dπ,w for the set S of points is considered in [4]: For any
p, q ∈ S, dπ,w(p, q) equals to 0 if p = q; otherwise, it is equal to w(p) + dπ(p, q) + w(q). Further, (S, dπ,w)
was shown as a metric space in [4].
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We devise a divide-and-conquer based algorithm to compute a (k, 4 + ǫ)-VFTAWS for the metric space
(S, dπ,w). Following [1], we define few terms. Let S′ be a set of points contained in a simple polygon P ′. A
vertical line segment that splits P ′ into two simple sub-polygons of P ′ such that each sub-polygon contains
at most two-thirds of the points in S′ is termed a splitting segment with respect to S′ and P ′. (In the
following description, S′ and P ′ are not mentioned with the splitting segment whenever they are clear from
the context.) The geodesic projection pl of a point p onto a splitting segment l is a point on l that has
the minimum geodesic Euclidean distance from p among all the points of l. By extending [1], we give an
algorithm to compute a (k, 4 + ǫ)-VFTAWS G for the metric space (S, dπ,w).

Our algorithm partitions P containing points in S into two simple sub-polygons P ′ and P ′′ with a splitting
segment l. For every point p ∈ S, we compute its geodesic projection pl onto l and assign w(p) + dπ(p, pl)
as the weight of pl. Let Sl be the set comprising of all the geodesic projections of S onto l. Also, let dl,w be
the additive weighted metric associated with points in Sl. We use the algorithm from Section 2 to compute
a (k, 4 + ǫ)-VFTAWS Gl for the metric space (Sl, dl,w). For every edge (r, s) in Gl, we add an edge between
p and q to G with weight dπ(p, q), wherein r (resp. s) is the geodesic projection of p (resp. q) onto l. Let S′

(resp. S′′) be the set of points contained in the sub-polygon P ′ (resp. P ′′) of P . We recursively process P ′

(resp. P ′′) with points in S′ (resp. S′′) unless |S′| (resp. |S′′|) is less than or equal to one.

Algorithm 2: k-ADDITIVEPOLYGONCLUSTFTS(S, P, k, ǫ)
Input : The simple polygon P , the set S on n additive weighted points, integer k ≥ 1 and a real

number 0 < ǫ ≤ 1
Output: (k, (12 + ǫ))-VFTS G
1: while card(P ∩ S) ≥ 1 do

2: compute a splitting segment l for P using the algorithm given in [20]
3: initialize the set Sl of the projections to φ
4: for every p ∈ S do

5: find the projection pl of p on l
6: assign a weight w(p) + dπ(p, pl) to pl
7: Sl := Sl ∪ {pl}
8: end for

9: compute a (k, (4 + ǫ))-vertex fault-tolerant spanner Gl for the set Sl using Algorithm 1
10: for every edge (r, s) in Gl, add the edge (p, q) to G, where

r(resp. s) is the projection of p(resp. q) on l

11: k-ADDITIVEPOLYGONCLUSTFTS(S ∩ P ′

l
, P ′

l
, k, ǫ)

//P ′

l denotes the sub-polygon to the left of l

12: k-ADDITIVEPOLYGONFTS(S ∩ P ′′

l
, P ′′

l
, k, ǫ)

//P ′′

l denotes the sub-polygon to the right of l

13: end while

We prove that the graph G is a (k, (12 + 15ǫ))-VFTAWS for the metric space (S, dπ,w). (Later, with
further refinements to this graph, we improve the stretch factor to (4 + 14ǫ).) We show that by removing
any subset S′ with |S′| ≤ k from G, for any two points p and q in S \ S′, there exists a path between p and
q in G \ S′ such that the dG(p, q) is at most (12 + 15ǫ)dπ,w(p, q). First, we note that there exists a splitting
segment l at some iteration of the algorithm so that p and q are on different sides of l. Let r be a point
belonging to l∩π(p, q). Let S′

l be the set comprising of geodesic projections of points in S′ on l. Since Gl is a
(k, (4+5ǫ))-VFTAWS for the metric space (Sl, dl,w), there exists a path Q between pl and ql in Gl \S′

l whose
length is upper bounded by (4+5ǫ) ·dl,w(pl, ql). Let Q′ be a path between p and q in G \S′ which is obtained
by replacing each vertex vl of Q by v in S such that the point vl is the geodesic projection of v on l. In the
following, we show that the length of Q′, which is dG\S′(p, q), is upper bounded by (12 + 15ǫ) · dπ,w(p, q).
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For every x, y ∈ S,
dπ,w(x, y) = w(x) + dπ(x, y) + w(y)

≤ w(x) + dπ(x, xl) + dπ(xl, yl) + dπ(yl, y) + w(y)

[by triangle inequality]

= w(xl) + dπ(xl, yl) + w(yl)

[since the weight associated with projection zl of every point z is w(z) + dπ(z, zl)]

= dl,w(xl, yl). (5)

This implies,

dG\S′(p, q) ≤
∑

xl,yl∈Q

dπ,w(x, y)

≤
∑

xl,yl∈Q

dl,w(xl, yl)

[from (5)]

≤ (4 + 5ǫ) · dl,w(pl, ql) (6)

[since Gl is a (k, (4 + 5ǫ))-vertex fault-tolerant geodesic spanner]

= (4 + 5ǫ) · [w(pl) + dl(pl, ql) + w(ql)]

= (4 + 5ǫ) · [w(pl) + dπ(pl, ql) + w(ql)]

[since P contains l, shortest path between pl and ql

is same as the geodesic shortest path between pl and ql]

= (4 + 5ǫ) · [w(p) + dπ(p, pl) + dπ(pl, ql) + dπ(ql, q) + w(q)] (7)

[since the weight associated with projection zl of every point z is w(z) + dπ(z, zl)].

Since r is a point belonging to both l as well as to π(p, q),
dπ(p, pl) ≤ dπ(p, r) and dπ(q, ql) ≤ dπ(q, r). (8)

Substituting (18) into (17),
dG\S′(p, q) ≤ (4 + 5ǫ) · [w(p) + dπ(p, r) + dπ(pl, ql) + dπ(r, q) + w(q)]

≤ (4 + 5ǫ) · [w(p) + dπ(p, r) + w(r) + dπ(pl, ql) + w(r) + dπ(r, q) + w(q)]

[since the weight associated with every point is non-negative]

= (4 + 5ǫ) · [dπ,w(p, r) + dπ(pl, ql) + dπ,w(r, q)]

= (4 + 5ǫ) · [dπ,w(p, q) + dπ(pl, ql)] (9)

[since π(p, q) intersects l at r, by optimal substructure property of shortest

paths, π(p, q) = π(p, r) + π(r, q)].
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Consider
dπ(pl, ql) ≤ dπ(pl, p) + dπ(p, q) + dπ(q, ql)

[since π follows triangle inequality]

≤ dπ(r, p) + dπ(p, q) + dπ(q, r)

[using (18)]

≤ w(r) + dπ(r, p) + w(p) + w(p) + dπ(p, q) + w(q) + w(q) + dπ(q, r) + w(r)

[since weight associated with every point is non-negative]

= dπ,w(p, r) + dπ,w(p, q) + dπ,w(r, q)

= dπ,w(p, q) + dπ,w(p, q)

[since π(p, q) intersects l at r, by optimal substructure property of shortest

paths, π(p, q) = π(p, r) + π(r, q)]

= 2dπ,w(p, q). (10)

Substituting (20) into (19),
dG\S′(p, q) ≤ 3(4 + 5ǫ) · dπ,w(p, q).

Hence, the graph G computed as described above is a (k, 12+ ǫ)-VFTAWS for the metric space (S, dπ,w).
We further improve the stretch factor of G by applying the refinement given in [6] to the above-described
algorithm. In doing this, for each point p ∈ S, we compute the geodesic projection pγ of p on the splitting line
γ and we construct a set S(p, γ) as defined herewith. Let γ(p) ⊆ γ be {x ∈ γ : dγ,w(pγ , x) ≤ (1+2ǫ)·dπ(p, pγ)}.
Here, for any p, q ∈ S, dγ,w(p, q) is equal to 0 if p = q; otherwise, equals to w(p) + dγ(p, q)+w(q). We divide
γ(p) into c pieces with c ∈ O(1/ǫ2): each piece is denoted by γj(p) for 1 ≤ j ≤ c, and the piece length is

at most ǫ · dπ(p, pγ). For every piece j, we compute the point p
(j)
γ nearest to p in γj(p). The set S(p, γ) is

defined as {p(j)γ : p
(j)
γ ∈ γj(p) and 1 ≤ j ≤ c}. For every r ∈ S(p, γ), the non-negative weight w(r) of r is set

to w(p) + dπ(p, r). Let Sγ be ∪p∈SS(p, γ).
We replace the set Sl in computing G with the set Sγ and compute a (k, (4 + 5ǫ))-VFTAWS Gl using the

algorithm from Section 2 for the set Sγ instead. Further, for every edge (r, s) in Gl, we add the edge (p, q)
to G with weight dπ(p, q) whenever r ∈ S(p, l) and s ∈ S(q, l). The rest of the algorithm remains the same.

In the following, we restate a lemma from [6], which is useful for our analysis.

Lemma 1. Let P be a simple polygon. Consider two points x, y ∈ P . Let r be the point at which shortest
path π(x, y) between x and y intersects a splitting segment γ. If r /∈ γ(x), point x′

γ (resp. y′γ) is set as xγ

(resp. yγ). Otherwise x′
γ (resp. y′γ) is set as the point from S(x, γ) (resp. S(y, γ)) which is nearest to x (resp.

y). Then dπ(x, x
′
γ) + dγ(x

′
γ , r) (resp. dγ(r, y

′
γ) + dπ(y

′
γ , y)) is less than or equal to (1 + ǫ) · dπ(x, r) (resp.

(1 + ǫ) · dπ(r, y)).

Theorem 2. Let S be a set of n weighted points in simple polygon P with non-negative weights associated
to points with weight function w. For any fixed constant ǫ > 0, there exists a (k, (4+ ǫ))-vertex fault-tolerant
additive weighted geodesic spanner with O(kn

ǫ2
lgn) edges for the metric space (S, dπ,w).

Proof: In constructing a (k, (4+ ǫ))-VFTAWS Gl for the set Sγ of n
ǫ2

points, we add O(kn
ǫ2
) edges to G in one

iteration. Let S(n) be the size of G when there are n points. Then S(n) = S(n1) + S(n2) +
kn
ǫ2

where n1, n2

are the number of points in each of the partitions formed by the splitting segment. Since n1, n2 ≥ n/3, S(n)
is O(kn

ǫ2
lgn).

For proving that G is a (k, (4 + ǫ))-VFTAWS for the metric space (S, dπ,w), we show that for any set
S′ ⊂ S with |S′| ≤ k and for any two points p, q ∈ S \ S′ there exists a (4 + ǫ)-spanner path between p and
q in G \ S′. First, we note that there exists a splitting segment l at some iteration of the algorithm so that
p and q are on different sides of l. Let r be a point belonging to l ∩ π(p, q). Let S′

l be the set comprising of
geodesic projections of points in S′ on l. Since Gl is a (k, (4 + 5ǫ))-VFTAWS for the metric space (Sl, dl,w),
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there exists a path Q between pl and ql in Gl \S′
l whose length is upper bounded by (4+5ǫ) · dl,w(pl, ql). Let

Q′ be a path between p and q in G \ S′ which is obtained by replacing each vertex vl of Q by v in S such
that the point vl is the geodesic projection of v on l. In the following, we show that the length of Q′, which
is dG\S′ (p, q), is upper bounded by (4 + 14ǫ) · dπ,w(p, q).
Following Lemma 1, if r /∈ l(p), point p′l (resp. q

′
l) is set as pl (resp. ql). Otherwise p′l (resp. q

′
l) is set as the

point from S(p, l) (resp. S(q, l)) which is nearest to p (resp. q).

dl,w(p
′
l, q

′
l) = w(p′l) + dl(p

′
l, q

′
l) + w(q′l)

≤ w(p′l) + dl(p
′
l, r) + dl(r, q

′
l) + w(q′l)

[by triangle inequality]

≤ w(p′l) + dl(p
′
l, r) + w(r) + w(r) + dl(r, q

′
l) + w(q′l)

[since the weight associated with each point is non-negative]

= w(p) + dπ(p, p
′
l) + dl(p

′
l, r) + w(r)

+ w(r) + dl(r, q
′
l) + dπ(q

′
l, q) + w(q) (11)

[due to weight assigned to geodesic projections].

Applying Lemma 1 with p′l and q′l,
dπ(p, p

′
l) + dl(p

′
l, r) ≤ (1 + ǫ) · dπ(p, r), and (12)

dl(r, q
′
l) + dπ(q

′
l, q) ≤ (1 + ǫ) · dπ(r, y). (13)

Substituting (22) and (23) in (11),
dl,w(p

′
l, q

′
l) ≤ w(p) + (1 + ǫ) · dπ(p, r) + w(r) + w(r) + (1 + ǫ) · dπ(r, q) + w(q)

≤ (1 + ǫ) · [dπ,w(p, r) + dπ,w(r, q)]

= (1 + ǫ) · dπ,w(p, q) (14)

[since r ∈ l ∩ π(p, q), by the optimal substructure property of shortest

paths, π(p, q) = π(p, r) + π(r, q)].

Replacing pl (resp. ql) by pl
′ (resp. ql′) in inequality (6),

dG\S′(p, q) ≤ (4 + 5ǫ) · dl,w(pl′, ql′)
≤ (4 + 5ǫ)(1 + ǫ) · dπ,w(p, q)
[from (24)]

≤ (4 + 14ǫ) · dπ,w(p, q).

Thus, G is a (k, (4 + ǫ))-vertex fault-tolerant additive weighted geodesic spanner for the set S of points
located in the simple polygon P . ⊓⊔

4 Vertex fault-tolerant additive weighted spanner for points in a polygonal

domain

We devise an algorithm to compute a geodesic (k, (4+ǫ))-vertex fault-tolerant spanner for a set S of n points
lying in the free space D of the given polygonal domain P while each input point is associated with a non-
negative weight. The polygonal domain P consists of a simple polygon and h simple polygonal holes located
interior to to that polygon. Our algorithm depends on the algorithm given in [1] to compute a (5+ǫ)-spanner
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for a set of unweighted points lying in D. We decompose the free space D into simple polygons using O(h)
splitting segments such that no splitting segment crosses any of the holes of D and each of the resultant
simple polygons has at most three splitting segments bounding it. As part of this decomposition, two vertical
line segments are drawn, one upwards and the other downwards, respectively from the leftmost and rightmost
extreme (along the x-axis) vertices of each hole. If any of the resulting simple polygons has more than three
splitting segments on its boundary, then that simple polygon is further decomposed. To achieve efficiency, a
splitting segment is chosen such that it has around half of its bounding splitting segments on either of its
sides. This algorithm results in partitioning D into O(h) simple polygons. Further, a graph Gd is constructed
where each vertex of Gd corresponds to a simple polygon of this decomposition. Each vertex v of Gd is
associated with a weight equal to the number of points that lie inside the simple polygon corresponding to
v. Two vertices are connected by an edge in Gd whenever their corresponding simple polygons are adjacent
to each other in the decomposition. We note that Gd is a planar graph. Hence, we use the following theorem
from [8] to compute a O(

√
h)-separator R of Gd.

Theorem 3. Suppose G = (V,E) is a planar vertex-weighted graph with |V | = m. Then, an O(
√
m)-

separator for G can be computed in O(m) time. That is, V can be partitioned into sets P,Q and R such
that |R| = O(

√
m), there is no edge between P and Q, and w(P ), w(Q) ≤ 2

3w(V ). Here, w(X) is the sum of
weights of all vertices in X.

We compute a O(
√
h)-separator R for the graph Gd using Theorem 3. Let P,Q, and R be the sets into

which the vertices of Gd is partitioned. For each vertex r ∈ R, we collect the bounding splitting segments of
the simple polygon corresponding to r into H i.e., O(

√
h) splitting segments are collected into a set H . For

each splitting segment l in H , we proceed as follows. For each point p that lies in the given simple polygon,
we find the projection pl of p on l; we assign the weight w(p) + dπ(p, pl) to point pl and include pl into the
set Sl corresponding to points projected on to line l. We compute the (k, 4+ ǫ)-VFTAWS Gl for the set Sl of
points using the algorithm given in Section 2 for additive weighted points located in R

d. For every edge (r, s)
in Gl, we introduce an edge (p, q) in G, where r (resp. s) is the projection of p (resp. q) on l. Recursively,
we compute vertex-fault tolerant additive weighted spanner for points lying in simple polygon corresponding
to P (resp. Q). The recursion is continued till P (resp. Q) contains exactly one vertex. We first prove that
this algorithm computes a (k, (12 + ǫ))-vertex fault-tolerant spanner. Further, we modify this algorithm to
compute a (k, (4 + ǫ))-vertex fault-tolerant spanner.

Lemma 2. The spanner G is a geodesic (k, (12 + 15ǫ))-vertex fault-tolerant additive weighted spanner for
points in D.

Proof: Using induction on the number of points, we show that there exists a (12+15ǫ)-spanner path between
p and q in G \ S′

. The induction hypothesis assumes that for the number of points k′ < |S|, there exists a
(12+15ǫ)-spanner path between any two points belonging toG S. Consider a set S

′ ⊂ S such that |S′ | ≤ k and
two arbitrary points p and q from the set S \S′

. Here, as described above, P,Q, and R correspond to vertices
of a planar graph Gd. The union of simple polygons that correspond to vertices of P (resp. Q,R) is denoted
with poly(P ) (resp. poly(Q), poly(R)). Also, the set H is as described in the algorithm. Based on the location
of p and q, the following cases arise: (i) both p and q are lying in P ′ ∈ {poly(P ), poly(Q), and poly(R)} and
the geodesic Euclidean shortest path between p and q does not intersect any splitting segment from the set
H , and (ii) p is lying in P ′ ∈ {poly(P ), poly(Q), poly(R)} and q is lying in P ′′ ∈ {poly(P ), poly(Q), poly(R)}
where P ′ 6= P ′′. In case (i), if P ′ is a simple polygon, then we can apply algorithm for simple polygons from
Section 3 and obtain a (4 + 14ǫ)-path between p and q. Otherwise, from the induction hypothesis, there
exists a (12+ 15ǫ)-path between p and q. In case (ii), a shortest path from p and q intersects at least one of
the O(

√
h) splitting segments in H , say l. Let π(p, q) be a shortest path between p and q that intersects l at

some point. Let r be this point of intersection. Since Gl is a (k, (4 + 5ǫ))-VFTAWS, there exists a path P ′

between pl and ql in Gl with length at most (4 + 5ǫ)dl,w(pl, ql). By replacing each vertex xl of P
′ by x ∈ S

such that xl is the projection of x on l, gives a path between p and q in G \ S′

. Thus, the length of the path
dG\S′ (p, q) is less than or equal to the length of the path P ′ in Gl. For every x, y ∈ S,
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Algorithm 3: k-ADDITIVEPOLYDOMCULSTFTS(S,D, k, ǫ)
Input : The polygonal domain D, the set S on n points, non-negative weights associated to points in S,

integer k ≥ 1 and a real number 0 < ǫ ≤ 1
Output: (k, (12 + ǫ))-VFTS G
1: decompose D into O(h) simple polygons such that each of these simple polygons have at most three splitting

lines on its boundary

2: construct a planar graph Gd (description of Gd is in text)

3: initialize the set X to contain all the vertices of Gd

4: while card(X) ≥ 1 do

5: if card(X) = 1 then

6: k-ADDITIVEPOLYGONCULSTFTS(S ∩ simplepoly(X), simplepoly(X), k, ǫ)
// simplepoly(X) denotes the simple polygon corresponding to the only vertex in X

7: else

8: compute a O(
√
h)-separator R for the graph Gd using Theorem 3;

let P,Q and R be the sets into which the vertices of Gd is partitioned
9: for every r ∈ R, add the bounding splitting segments of the simple polygon corresponding

to r to a set H
10: for every l ∈ H do

11: for every p ∈ D ∩ S do

12: find the projection pl of p on l
13: assign weight equal to w(p) + dπ(p, pl) to pl
14: Sl := Sl ∪ {pl}
15: end for

16: compute the (k, (4 + ǫ))-vertex fault-tolerant spanner for the set Sl using Algorithm 1
17: for every edge (r, s) in Gl, add the edge (p, q) to G, where

r (resp. s) is the projection of p(resp. q) on l
18: end for

19: k-ADDITIVEPOLYDOMCULSTFTS(S ∩ unionpoly(P ),D ∩ unionpoly(P ), k, ǫ)
// unionpoly(P ) denotes the set of simple polygons corresponding to each vertex of P

20: k-ADDITIVEPOLYDOMCULSTFTS(S ∩ unionpoly(Q),D ∩ unionpoly(Q), k, ǫ)
// unionpoly(Q) denotes the set of simple polygons corresponding to each vertex of Q

21: end if

22: end while

14



dπ,w(x, y) = w(x) + dπ(x, y) + w(y)

≤ w(x) + dπ(x, xl) + dπ(xl, yl) + dπ(yl, y) + w(y)

[by the triangle inequality]

= w(xl) + dπ(xl, yl) + w(yl)

[since the weight associated with projection zl of every point z is

w(z) + dπ(z, zl)]

= dl,w(xl, yl) (15)

This implies,

dG\S′ (p, q) =
∑

xl,yl∈P

dπ,w(x, y)

≤
∑

xl,yl∈P

dl,w(xl, yl)

[from (15)]

≤ (4 + 5ǫ).dl,w(pl, ql) (16)

[since Gl is a geodesic (k, (4 + 5ǫ))-VFTAWS]

= (4 + 5ǫ) · [w(pl) + dl(pl, ql) + w(ql)]

= (4 + 5ǫ) · [w(pl) + dπ(pl, ql) + w(ql)]

[since P contains l, shortest path between pl and ql along l

is same as the geodesic shortest path between pl and ql]

= (4 + 5ǫ) · [w(p) + dπ(p, pl) + dπ(pl, ql) + dπ(ql, q) + w(q)] (17)

[since the weight associated with projection zl of every point z is

w(z) + dπ(z, zl)].

Since r is a point belonging to both l as well as to π(p, q),
dπ(p, pl) ≤ dπ(p, r) and dπ(q, ql) ≤ dπ(q, r). (18)

Substituting (18) into (17),
dG\S′(p, q) ≤ (4 + 5ǫ) · [w(p) + dπ(p, r) + dπ(pl, ql) + dπ(r, q) + w(q)]

≤ (4 + 5ǫ) · [w(p) + dπ(p, r) + w(r) + dπ(pl, ql) + w(r) + dπ(r, q) + w(q)]

[since the weight associated with every point is non-negative]

= (4 + 5ǫ) · [dπ,w(p, r) + dπ(pl, ql) + dπ,w(r, q)]

= (4 + 5ǫ) · [dπ,w(p, q) + dπ(pl, ql)] (19)

[since π(p, q) intersects l at r, by optimal substructure property of shortest

paths, π(p, q) = π(p, r) + π(r, q)].
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Consider
dπ(pl, ql) ≤ dπ(pl, p) + dπ(p, q) + dπ(q, ql)

[since π follows triangle inequality]

≤ dπ(r, p) + dπ(p, q) + dπ(q, r)

[using (18)]

≤ w(r) + dπ(r, p) + w(p) + w(p) + dπ(p, q) + w(q) + w(q) + dπ(q, r) + w(r)

[since weight associated with every point is non-negative]

= dπ,w(p, r) + dπ,w(p, q) + dπ,w(r, q)

= dπ,w(p, q) + dπ,w(p, q)

[since π(p, q) intersects l at r, by optimal substructure property of shortest

paths, π(p, q) = π(p, r) + π(r, q)]

= 2dπ,w(p, q). (20)

Substituting (20) into (19), dG\S′(p, q) ≤ 3(4 + 5ǫ) · dπ,w(p, q). ⊓⊔

We further improve the stretch factor of G by applying the refinement given in [6] to the above-described
algorithm. In doing this, for each point p ∈ S, we compute the geodesic projection pγ of p on the splitting line
γ and we construct a set S(p, γ) as defined herewith. Let γ(p) ⊆ γ be {x ∈ γ : dγ,w(pγ , x) ≤ (1+2ǫ)·dπ(p, pγ)}.
Here, for any p, q ∈ S, dγ,w(p, q) is equal to 0 if p = q; otherwise, it is equal to w(p) + dγ(p, q) + w(q). We
divide γ(p) into c pieces with c ∈ O(1/ǫ2): each piece is denoted by γj(p) for 1 ≤ j ≤ c.For every piece j, we

compute the point p
(j)
γ nearest to p in γj(p). The set S(p, γ) is defined as {p(j)γ : p

(j)
γ ∈ γj(p) and 1 ≤ j ≤ c}.

For every r ∈ S(p, γ), the non-negative weight w(r) of r is set to w(p) + dπ(p, r). Let Sγ be ∪p∈SS(p, γ). We
replace the set Sl in computing G with the set Sγ and compute a (k, (4 + 5ǫ))-VFTAWS Gl for the set Sl

using the algorithm for points in R
d given in Section 2. Further, for every edge (r, s) in Gl, we add the edge

(p, q) to G such that r ∈ S(p, l) and s ∈ S(q, l). The rest of the algorithm remains the same.

Theorem 4. Let S be a set of n points in a polygonal domain D with non-negative weights associated to
points via weight function w. For any fixed constant ǫ > 0, there exists a (k, (4 + ǫ))-vertex fault-tolerant

additive weighted geodesic spanner with O(kn
√
h

ǫ2
lg n) edges for the metric space (S, dπ,w).

Proof: Let S(n) be the size of G. Our algorithm adds O(kn
√
h

ǫ2
) edges at each recursive level except for the

last level. At every leaf node l of the recurrence tree, we add O(knx

ǫ2
lgnx) edges, where nx is the number of

points inside the simple polygon corresponding to l. Hence, the number of edges of G is O(kn
√
h

ǫ2
lg n).

Next, we prove the stretch factor of the spanner. Consider any set S
′ ⊂ S such that |S′ | ≤ k and two

arbitrary points p and q from the set S \ S′

. We show that there exists a (4 + 14ǫ)-spanner path between
p and q in G \ S′

. If r /∈ l(p), then we set p′l (resp. q
′
l) equal to pl (resp. ql). Otherwise, p′l (resp. q

′
l) is set

as the point from S(p, l) (resp. S(q, l)) that is nearest to p (resp. q). (The r is defined before the theorem
statement.)

dl,w(p
′
l, q

′
l) = w(p′l) + dl(p

′
l, q

′
l) + w(q′l)

≤ w(p′l) + dl(p
′
l, r) + dl(r, q

′
l) + w(q′l)

[by the triangle inequality]

≤ w(p′l) + dl(p
′
l, r) + w(r) + w(r) + dl(r, q

′
l) + w(q′l)

[since the weight associated with each point is non-negative]

= w(p) + dπ(p, p
′
l) + dl(p

′
l, r) + w(r) + w(r) + dl(r, q

′
l)+

dπ(q
′
l, q) + w(q) (21)

[due to the assignment of the weight to the projection of any point]
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From the triangle inequality, we know the following:
dπ(p, p

′
l) + dl(p

′
l, r) ≤ dπ(p, r), and (22)

dl(r, q
′
l) + dπ(q

′
l, q) ≤ dπ(r, q). (23)

Substituting (22) and (23) in (21),
dl,w(p

′
l, q

′
l) ≤ w(p) + dπ(p, r) + w(r) + w(r) + dπ(r, q) + w(q)

= dπ,w(p, r) + dπ,w(r, q)

= dπ,w(p, q) (24)

[since r ∈ l ∩ π(p, q), by the optimal substructure property of shortest

paths, π(p, q) = π(p, r) + π(r, q)].

Replacing pl (resp. ql) by p′l (resp. q
′
l) in inequality (16),

dG\S′ (p, q) ≤ (4 + 5ǫ).dl,w(p
′
l, q

′
l)

≤ (4 + 5ǫ)dπ,w(p, q) [from (24)].

Thus, G is a geodesic (k, (4 + ǫ))-VFTAWS for S. ⊓⊔

5 Vertex fault-tolerant additive weighted spanner for points on a terrain

In this section, we present an algorithm to compute a geodesic (k, (4+ ǫ))-VFTAWS with O(kn lgn
ǫ2

) edges for
any given set S of n non-negative weighted points lying on a polyhedral terrain T . We denote the boundary
of T with ∂T . The following distance function dT ,w : S × S → IR ∪ {0} is used to compute the geodesic
distance on T between any two points p, q ∈ S: dT ,w(p, q) = w(p) + dT (p, q) +w(q). Here, w(p) (resp. w(q))
is the non-negative weight of p ∈ S (resp. q ∈ S). We denote a geodesic Euclidean shortest path between
any two points a and b on T with π(a, b). For any two points x, y ∈ ∂T , we denote the closed region lying
to the right (resp. left) of π(x, y) when going from x to y, including the points lying on the shortest path
π(x, y) with π+(x, y) (resp. π−(x, y)). The projection pπ of a point p on the shortest path π between two
points lying on the polyhedral terrain T is defined as a point on π that is at the minimum geodesic distance
from p among all the points located on π. For three points u, v, w ∈ T , the closed region bounded by shortest
paths π(u, v), π(v, w), and π(w, u) is termed sp-triangle, denoted with ∆(u, v, w). If the points u, v, w ∈ T
are clear from the context, we denote the sp-triangle with ∆. In the following, we restate a Theorem from
[6], which is useful for our analysis.

Theorem 5. For any set P of n points on a polyhedral terrain T , there exists a balanced sp-separator: a
shortest path π(u, v) connecting two points u, v ∈ ∂T such that 2n

9 ≤ |π+(u, v)∩P | ≤ 2n
3 , or a sp-triangle ∆

such that 2n
9 ≤ |∆ ∩ P | ≤ 2n

3 .

Thus, an sp-separator is either bounded by a shortest path (in the former case) or by three shortest paths
(in the latter case). Let γ be a shortest path that belongs to an sp-separator. First, a balanced sp-separator
as given in Theorem 5 is computed. The sets Sin and Sout comprising of points are defined as follows: if
the sp-separator is a shortest path then define Sin to be γ+(u, v) ∩ S; otherwise, Sin is ∆ ∩ S; points in S
that do not belong to Sin are in Sout. For each p ∈ S, we compute the projection pγ of p on every shortest
path γ of sp-separator, and associate a weight dT (p, pγ) with pγ . Let Sγ be a set defined as ∪p∈S pγ . Our
algorithm computes a (2+ ǫ)-spanner Gγ for the weighted points in Sγ . Further, for each edge (pγ , qγ) in Gγ ,
an edge (p, q) is added to G, where pγ (resp. qγ) is the projection of p (resp. q) on γ. The spanners for the
sets Sin and Sout are computed recursively, and the edges from these spanners are added to G. In the base
case, if |S| ≤ 3 then a complete graph on the set S is constructed. We first obtain a (k, (12 + 15ǫ))-vertex
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fault-tolerant additive weighted spanner for the set S of points lying on the terrain T . (This construction
is later modified to compute a (k, (4 + ǫ))-VFTAWS.) In specific, with every projected point pγ , instead of
associating dT (p, pγ) as the weight of pγ , we associate w(p) + dT (p, pγ) as the weight of pγ . The rest of the
algorithm in constructing G remains the same as in [6].

Algorithm 4: k-ADDITIVETERRAINCLUSTFTS(S,D, k, ǫ)
Input : The polyhedral terrain T , the set S on n additive weighted points, integer k ≥ 1 and a real

number 0 < ǫ ≤ 1
Output: (k, (12 + ǫ))-VFTS G
1: while card(T ∩ S) ≥ 1 do

2: compute a balanced sp-separator for T using the algorithm given in [6]
3: if the balanced sp-separator is a shortest path π(u, v) between u, v ∈ ∂T , then define set Sin to be

π+(u, v) ∩ S; otherwise, define set Sin to be ∆ ∩ S, where ∆ is a sp-triangle.
4: further, define the set Sout to be S \ Sin

5: for every bounding shortest path γ of the sp-separator do
6: initialize the set Sγ of the projections to φ
7: for every p ∈ S do

8: find the projection pγ of p on γ
9: assign a weight equal to w(p) + dT (p, pγ) to pγ

10: Sγ := Sγ ∪ {pγ}
11: end for

12: compute a (k, (4 + ǫ))-vertex fault-tolerant spanner Gγ for the set Sγ using Algorithm 1
13: for every edge (r, s) in Gγ , add the edge (p, q) to G where r(resp. s) is the projection of p

(resp. q) on l
14: end for

15: k-ADDITIVETERRAINCLUSTFTS(Sin, X, k, ǫ)
//X set to is π+(u, v) if the balanced sp-separator is a shortest path π(u, v); else it is set to ∆

16: k-ADDITIVETERRAINFTS(Sout, Y, k, ǫ)
// Y set to is T \ π+(u, v) if the balanced sp-separator is a shortest path π(u, v); else it is set to T \∆

17: end while

To prove the graph G is a geodesic (k, (12 + 15ǫ))-VFTAWS for the points in S, we use induction on
the number of points. Consider any set S′ ⊂ S such that |S′| ≤ k and two arbitrary points p and q from
the set S \ S′. We show that there exists a path between p and q in G \ S′ such that dG(p, q) is at most
(12 + 15ǫ)dπ,w(p, q). The induction hypothesis assumes that for the number of points k′ < |S| in a region of
T , there exists a (12 + 15ǫ)-spanner path between any two points belonging to the given region in G \ S′.
As part of the inductive step, we extend it to n points. For the case of both p and q are on the same side of
a bounding shortest path γ of the balanced separator, i.e., both are in Sin or Sout, by induction hypothesis
(as the number of points in Sin or Sout is less than |S|), there exists a (12 + 15ǫ)-spanner path between p
and q in G \ S′. The only case remains to be proved is when p lies on one side of γ and q lies on the other
side of γ, i.e., p ∈ Sin and q ∈ Sout or, q ∈ Sin and p ∈ Sout. W.l.o.g., we assume that the former holds.
Let r be a point on γ at which the geodesic shortest path π(p, q) between p and q intersects γ. Since Gγ is
a (k, (4 + 5ǫ))-VFTS, there exists a path P between pγ and qγ in Gγ of length at most (4 + 5ǫ).dγ,w(pγ , qγ).
Let P ′ be the path obtained by replacing each vertex xγ of P by x ∈ S such that xγ is the projection of x
on γ. Note that the path P ′ is between nodes p and q in G \S′. The length dG\S′(p, q) of path P ′ is less than
or equal to the length of the path P in Gγ . In the following, we show that dG\S′(p, q) ≤ (12+15ǫ)dT ,w(p, q).
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For every x, y ∈ S,
dT ,w(x, y) = w(x) + dT (x, y) + w(y)

≤ w(x) + dT (x, xγ) + dT (xγ , yγ) + dT (yγ , y) + w(y)

[by the triangle inequality]

= w(xγ) + dT (xγ , yγ) + w(yγ)

[since the weight associated with projection zγ of every point z is

w(z) + dT (z, zγ)]

= dγ,w(xγ , yγ). (25)

This implies,

dG\S′(p, q) =
∑

xγ ,yγ∈P

dT ,w(x, y)

≤
∑

xγ ,yγ∈P

dγ,w(xγ , yγ)

[from (25)]

≤ (4 + 5ǫ).dγ,w(pγ , qγ) (26)

[since Gγ is a (k, (4 + 5ǫ))-vertex fault tolerant geodesic spanner]

= (4 + 5ǫ).[w(pγ) + dT (pγ , qγ) + w(qγ)]

[since γ is a shortest path on T , shortest path between any two

points on γ is a geodesic shortest path on T ]

= (4 + 5ǫ).[w(p) + dT (p, pγ) + dT (pγ , qγ) + dT (qγ , q) + w(q)] (27)

[since the weight associated with projection zγ is w(z) + dT (z, zγ)].

By the definition of projection of any point on γ, we know that
dT (p, pγ) ≤ dT (p, r) and dT (q, qγ) ≤ dT (q, r). (28)

Substituting (28) into (27),
dG\S′(p, q) ≤ (4 + 5ǫ).[w(p) + dT (p, r) + dT (pγ , qγ) + dT (r, q) + w(q)]

≤ (4 + 5ǫ).[w(p) + dT (p, r) + w(r) + dT (pγ , qγ) + w(r) + dT (r, q) + w(q)]

[since the weight of every point is non-negative]

= (4 + 5ǫ).[dT ,w(p, r) + dT (pγ , qγ) + dT ,w(r, q)]

= (4 + 5ǫ).[dT ,w(p, q) + dT (pγ , qγ)] (29)

[since π(p, q) intersects γ at r]

paths π(p, q) = π(p, r) + π(r, q)].
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Further,
dT (pγ , qγ) ≤ dT (pγ , p) + dT (p, q) + dT (q, qγ)

[by the triangle inequality]

≤ dT (r, p) + dT (p, q) + dT (q, r)

[using (28)]

≤ w(r) + dT (r, p) + w(p) + w(p) + dT (p, q) + w(q) + w(q)+

dT (q, r) + w(r)

[since the weight of every point is non-negative]

= dT ,w(p, r) + dT ,w(p, q) + dT ,w(r, q)

= dT ,w(p, q) + dT ,w(p, q)

[since π(p, q) intersects γ at r]

= 2dT ,w(p, q). (30)

Substituting (30) into (29) yields, dG\S′(p, q) ≤ 3(4 + 5ǫ).dT ,w(p, q).
We improve the stretch factor of G by applying the same refinement as the one used in the algorithm in

Section 4. Again, we denote the graph resulted after applying that refinement with G.

Theorem 6. Let S be a set of n weighted points on a polyhedral terrain T with non-negative weights as-
sociated to points via weight function w. For any fixed constant ǫ > 0, there exists a (k, (4 + ǫ))-vertex
fault-tolerant additive weighted geodesic spanner with O(kn

ǫ2
lg n) edges.

Proof: The argument for the number of edges is same as in the proof of Theorem 4. To prove that the graph
G is a geodesic (k, (4 + 14ǫ))-VFTAWS for the points in S, we use induction on |S|. W.l.o.g., we assume
that p ∈ Sin and q ∈ Sout. Let r be the point at which the geodesic shortest path π(p, q) between p and q
intersects r. Since Gγ is a (k, (4 + 5ǫ))-VFTS, there exists a path R between pγ and qγ in Gγ of length at
most (4 + 5ǫ).dγ,w(pγ , qγ). By replacing each vertex xγ of R by x ∈ S such that xγ is the projection of x on
γ, yields a path R′ between p and q in G \ S′. The length dG\S′(p, q) of path R′ is less than or equal to the
length of the path R in Gγ . If r /∈ γ(p), point p′γ (resp. q′γ) is set as pγ (resp. qγ). Otherwise, p′γ (resp. q′γ) is
set as the point in S(p, γ) (resp. S(q, γ)) that is nearest to p (resp. q).

dγ,w(p
′
γ , q

′
γ) = w(p′γ) + dγ(p

′
γ , q

′
γ) + w(q′γ)

≤ w(p′γ) + dγ(p
′
γ , r) + dγ(r, q

′
γ) + w(q′γ)

[by the triangle inequality]

≤ w(p′γ) + dγ(p
′
γ , r) + w(r) + w(r) + dγ(r, q

′
γ) + w(q′γ)

[since the weight of each point is non-negative]

= w(p) + dT (p, p
′
γ) + dγ(p

′
γ , r) + w(r) + w(r) + dγ(r, q

′
γ)+

dT (q
′
γ , q) + w(q) (31)

[due to the association of weight to the projections of points].

From the triangle inequality, we know that dT (p, p′γ) + dγ(p
′
γ , r) ≤ dT (p, r), and dγ(r, q

′
γ) + dT (q′γ , q) ≤

dT (r, q). Hence (31) is written as

dT ,w(p
′
γ , q

′
γ) ≤ w(p) + dT (p, r) + w(r) + w(r) + dT (r, q) + w(q)

= dT ,w(p, r) + dT ,w(r, q)

= dT ,w(p, q) (32)

[since π(p, q) intersects γ at r].
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Replacing pγ (resp. qγ) by pγ
′ (resp. qγ ′) in inequality (26),

dG\S′(p, q) ≤ (4 + 5ǫ).dγ,w(p
′
γ , q

′
γ)

≤ (4 + 5ǫ)dT ,w(p, q) [from (32).]

Thus G is a geodesic (k, (4 + ǫ))-VFTAWS for S. ⊓⊔

6 Conclusions

In this paper, we gave algorithms to achieve k vertex fault-tolerance when the metric is additive weighted.
We devised algorithms to compute a (k, 4+ǫ)-VFTAWS when the input points belong to any of the following:
R

d, simple polygon, polygonal domain, and the terrain. Apart from the efficient computation, it would be
interesting to explore the lower bounds on the number of edges for the fault-tolerant additive weighted
spanners. Besides, the future work in the context of additive spanners could include finding the relation
between the vertex-fault tolerance and the edge-fault tolerance, and optimizing various spanner parameters,
like degree, diameter and weight.
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