Skip to main content

Fault-Tolerant Additive Weighted Geometric Spanners

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11394))

Included in the following conference series:

Abstract

Let S be a set of n points and let w be a function that assigns non-negative weights to points in S. The additive weighted distance \(d_w(p, q)\) between two points \(p,q \in S\) is defined as \(w(p) + d(p, q) + w(q)\) if \(p \ne q\) and it is zero if \(p = q\). Here, d(pq) is the (geodesic) Euclidean distance between p and q. For a real number \(t > 1\), a graph G(SE) is called a t-spanner for the weighted set S of points if for any two points p and q in S the distance between p and q in graph G is at most t.\(d_w(p, q)\) for a real number \(t > 1\). For some integer \(k \ge 1\), a t-spanner G for the set S is a (k, t)-vertex fault-tolerant additive weighted spanner, denoted with (kt)-VFTAWS, if for any set \(S' \subset S\) with cardinality at most k, the graph \(G \setminus S'\) is a t-spanner for the points in \(S \setminus S'\). For any given real number \(\epsilon > 0\), we present algorithms to compute a \((k, 4+\epsilon )\)-VFTAWS for the metric space \((S, d_w)\) resulting from the points in S belonging to either \(\mathbb {R}^d\) or located in the given simple polygon. Note that d(pq) is the geodesic Euclidean distance between p and q in the case of simple polygons whereas in the case of \(\mathbb {R}^d\) it is the Euclidean distance along the line segment joining p and q.

R. Inkulu—This research is supported in part by NBHM grant 248(17)2014-R&D-II/1049.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abam, M.A., Adeli, M., Homapour, H., Asadollahpoor, P.Z.: Geometric spanners for points inside a polygonal domain. In: Proceedings of Symposium on Computational Geometry, pp. 186–197 (2015)

    Google Scholar 

  2. Abam, M.A., de Berg, M., Farshi, M., Gudmundsson, J., Smid, M.H.M.: Geometric spanners for weighted point sets. Algorithmica 61(1), 207–225 (2011)

    Article  MathSciNet  Google Scholar 

  3. Abam, M.A., de Berg, M., Seraji, M.J.R.: Geodesic spanners for points on a polyhedral terrain. In: Proceedings of Symposium on Discrete Algorithms, pp. 2434–2442 (2017)

    Google Scholar 

  4. Althöfer, I., Das, G., Dobkins, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discret. Comput. Geom. 9(1), 81–100 (1993)

    Article  MathSciNet  Google Scholar 

  5. Bose, P., Carmi, P., Couture, M.: Spanners of additively weighted point sets. In: Proceedings of Scandinavian Workshop on Algorithm Theory, pp. 367–377 (2008)

    Google Scholar 

  6. Czumaj, A., Zhao, H.: Fault-tolerant geometric spanners. Discret. Comput. Geom. 32(2), 207–230 (2004)

    Article  MathSciNet  Google Scholar 

  7. Har-Peled, S.: Geometric Approximation Algorithms. American Mathematical Society, Providence (2011)

    Book  Google Scholar 

  8. Har-Peled, S., Mendel, M.: Fast construction of nets in low-dimensional metrics and their applications. SIAM J. Comput. 35(5), 1148–1184 (2006)

    Article  MathSciNet  Google Scholar 

  9. Levcopoulos, C., Narasimhan, G., Smid, M.H.M.: Improved algorithms for constructing fault-tolerant spanners. Algorithmica 32(1), 144–156 (2002)

    Article  MathSciNet  Google Scholar 

  10. Lukovszki, T.: New results of fault tolerant geometric spanners. In: Proceedings of Workshop on Algorithms and Data Structures, pp. 193–204 (1999)

    Google Scholar 

  11. Narasimhan, G., Smid, M.H.M.: Geometric Spanner Networks. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  12. Solomon, S.: From hierarchical partitions to hierarchical covers: optimal fault-tolerant spanners for doubling metrics. In: Proceedings of Symposium on Theory of Computing, pp. 363–372 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Inkulu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhattacharjee, S., Inkulu, R. (2019). Fault-Tolerant Additive Weighted Geometric Spanners. In: Pal, S., Vijayakumar, A. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2019. Lecture Notes in Computer Science(), vol 11394. Springer, Cham. https://doi.org/10.1007/978-3-030-11509-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11509-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11508-1

  • Online ISBN: 978-3-030-11509-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics