Skip to main content

A 2nd-Order Numerical Scheme for Fractional Ordinary Differential Equation Systems

  • Conference paper
  • First Online:
Finite Difference Methods. Theory and Applications (FDM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11386))

Included in the following conference series:

Abstract

We propose a new numerical method for fractional ordinary differential equation systems based on a judiciously chosen quadrature point. The proposed method is efficient and easy to implement. We show that the convergence order of the method is 2. Numerical results are presented to demonstrate that the computed rates of convergence confirm our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)

    Article  MathSciNet  Google Scholar 

  2. Erturk, V.S., Momani, S.: Solving systems of fractional differential equations using differential transform method. J. Comput. Appl. Math. 215, 142–151 (2008)

    Article  MathSciNet  Google Scholar 

  3. Gejji, V.D., Jafari, H.: Adomian decomposition: a tool for solving a system of fractional differential equations. J. Math. Anal. Appl. 301(2), 508–518 (2005)

    Article  MathSciNet  Google Scholar 

  4. Guo, B., Pu, X., Huang, F.: Fractional Partial Differential Equations and Their Numerical Solutions. World Scientific, Singapore (2015)

    Book  Google Scholar 

  5. Jafari, H., Gejji, V.D.: Solving a system of nonlinear fractional differential equation using adomain decomposition. Appl. Math. Comput. 196, 644–651 (2006)

    Article  Google Scholar 

  6. Kilbas, A.A., Marzan, S.A.: Cauchy problem for differential equation with caputo derivative. Fract. Calc. Appl. Anal. 7(3), 297–321 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Li, W., Wang, S., Rehbock, V.: A 2nd-order one-point numerical integration scheme for fractional ordinary differential Equation. Numer. Algebra Control Optim. 7(3), 273–287 (2017)

    Article  MathSciNet  Google Scholar 

  8. Li, W., Wang, S., Rehbock, V.: Numerical solution of fractional optimal control. J. Optim. Theory Appl. (2018). https://doi.org/10.1007/s10957-018-1418-y

  9. Momani, S., Al-Khaled, K.: Numerical solutions for systems of fractional differential equations by the decomposition method. Appl. Math. Comput. 162(3), 1351–1365 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Momani, S., Odibat, Z.: Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 365(5–6), 345–350 (2007)

    Article  MathSciNet  Google Scholar 

  11. Momani, S., Odibat, Z.: Numberical approach to differential equations of fractional order. J. Comput. Appl. Math. 207, 96–110 (2007)

    Article  MathSciNet  Google Scholar 

  12. Odibat, Z., Momani, S.: Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simulat. 1(7), 15–27 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Varga, R.S.: On Diagonal dominance arguments for bounding \(\Vert A^{-1}\Vert _{\infty }\). Linear Algebra Appl. 14(3), 211–217 (1976)

    Article  MathSciNet  Google Scholar 

  14. Zurigat, M., Momani, S., Odibat, Z., Alawneh, A.: The homotopy analysis method for handling systems of fractional differential equations. Appl. Math. Model. 34, 24–35 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

This work is partially supported by US Air Force Office of Scientific Research Project FA2386-15-1-4095.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, W., Wang, S. (2019). A 2nd-Order Numerical Scheme for Fractional Ordinary Differential Equation Systems. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science(), vol 11386. Springer, Cham. https://doi.org/10.1007/978-3-030-11539-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11539-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11538-8

  • Online ISBN: 978-3-030-11539-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics