Skip to main content

An Operational Deep Learning Pipeline for Classifying Life Events from Individual Tweets

  • Conference paper
  • First Online:
Information Management and Big Data (SIMBig 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 898))

Included in the following conference series:

Abstract

We here present an operational deep learning pipeline for classifying life events from individual tweets, using job loss as a use case and Twitter data collected between 2010 and 2013 (historic sample from the public stream). The pipeline includes identification of keywords through snowball sampling, multiple rater manual annotation, supervised deep learning, text processing (word embedding, bag of words) and architecture selection (convolutional, shallow-and-wide convolutional, and long-short-term memory) with parameter optimization, external validation and feedback learning. After model optimization, a shallow-and-wide network with a pre-trained 200-dimensional word2vec achieved a precision of 78% (over an average single keyword precision of 50%) and an area under receiver operating characteristic of 86%. Precision and recall also increased by 5% using bag of words. When tested on tweets with ambiguous annotations (i.e. tweets that were hard for human annotators to classify), the network achieved 65% precision. Finally, on a random set of tweets that did not contain any of the snowballed keywords, 30% were classified as job loss events; this putatively false positive set can be used to reinforce the learner’s training. In conclusion, the pipeline streamlines both the manual and automated process, providing feedback reinforcement (snowballing and external tweets), and shows good performance on classifying individual tweets on the use case, potentially saving human resources needed to collate such data for research studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reece, A.G., Reagan, A.J., Lix, K.L.M., Dodds, P.S., Danforth, C.M., Langer, E.J.: Forecasting the onset and course of mental illness with Twitter data. Sci. Rep. 7(1), 13006 (2017). https://doi.org/10.1038/s41598-017-12961-9

    Article  Google Scholar 

  2. Tausczik, Y.R., Pennebaker, J.W.: The psychological meaning of words: LIWC and computerized text analysis methods. J. Lang. Soc. Psychol. 29(1), 24–54 (2010). https://doi.org/10.1177/0261927X09351676

    Article  Google Scholar 

  3. Alsaedi, N., Burnap, P., Rana, O.: Can we predict a riot? Disruptive event detection using Twitter. ACM Trans. Internet Technol. 17(2), 18:1–18:26 (2017). https://doi.org/10.1145/2996183

    Article  Google Scholar 

  4. Sumner, C., Byers, A., Boochever, R., Park, G.J.: Predicting dark triad personality traits from Twitter usage and a linguistic analysis of tweets. In: 2012 11th International Conference on Machine Learning and Applications, vol. 2, pp. 386–393 (2012). https://doi.org/10.1109/ICMLA.2012.218

  5. Makazhanov, A., Rafiei, D.: Predicting political preference of Twitter users. In: 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013), pp. 298–305 (2013). https://doi.org/10.1145/2492517.2492527

  6. Conover, M., Gonçalves, B., Ratkiewicz, J., Flammini, A., Menczer, F.: Predicting the political alignment of Twitter users. In: 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing, pp. 192–199 (2011). https://doi.org/10.1109/PASSAT/SocialCom.2011.34

  7. Ramos, J.P.: Using TF-IDF to determine word relevance in document queries. Presented at the First International Conference on Machine Learning, New Brunswick, NJ, USA (2003)

    Google Scholar 

  8. Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn. 42(1–2), 177–196 (2001). https://doi.org/10.1023/A:1007617005950

    Article  MATH  Google Scholar 

  9. Won, D., Steinert-Threlkeld, Z.C., Joo, J.: Protest activity detection and perceived violence estimation from social media images. ArXiv:1709.06204 [Cs] (2017). http://arxiv.org/abs/1709.06204

  10. Zhang, Z., He, Q., Gao, J., Ni, M.: A deep learning approach for detecting traffic accidents from social media data. Transp. Res. Part C: Emerg. Technol. 86, 580–596 (2018). https://doi.org/10.1016/j.trc.2017.11

    Article  Google Scholar 

  11. Founta, A.-M., Chatzakou, D., Kourtellis, N., Blackburn, J., Vakali, A., Leontiadis, I.: A unified deep learning architecture for abuse detection. ArXiv:1802.00385 [Cs] (2018). http://arxiv.org/abs/1802.00385

  12. Badjatiya, P., Gupta, S., Gupta, M., Varma, V.: Deep learning for hate speech detection in tweets. In: Proceedings of the 26th International Conference on World Wide Web Companion, pp. 759–760. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland (2017). https://doi.org/10.1145/3041021.3054223

  13. Pitsilis, G.K., Ramampiaro, H., Langseth, H.: Detecting offensive language in tweets using deep learning. ArXiv:1801.04433 [Cs] (2018). http://arxiv.org/abs/1801.04433

  14. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation, pp. 1532–1543. Association for Computational Linguistics (2014). https://doi.org/10.3115/v1/D14-1162

  15. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality, p. 9 (n.d.)

    Google Scholar 

  16. Bian, J., et al.: Mining Twitter to assess the public perception of the “internet of things”. PLoS One 11(7), e0158450 (2016). https://doi.org/10.1371/journal.pone.0158450

    Article  Google Scholar 

  17. McHugh, M.L.: Interrater reliability: the kappa statistic. Biochem. Med. 22(3), 276–282 (2012)

    Article  MathSciNet  Google Scholar 

  18. Goodman, L.A.: Snowball sampling. Ann. Math. Stat. 32(1), 148–170 (1961). https://doi.org/10.1214/aoms/1177705148

    Article  MathSciNet  MATH  Google Scholar 

  19. Nadeau, C., Bengio, Y.: Inference for the generalization error. In: Proceedings of the 12th International Conference on Neural Information Processing Systems, pp. 307–313. MIT Press, Cambridge (1999). http://dl.acm.org/citation.cfm?id=3009657.3009701

  20. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time-series, p. 15 (n.d.)

    Google Scholar 

  21. Le, H.T., Cerisara, C., Denis, A.: Do convolutional networks need to be deep for text classification? ArXiv:1707.04108 [Cs] (2017). http://arxiv.org/abs/1707.04108

  22. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  23. Das, S., Wong, W.K., Dietterich, T., Fern, A., Emmott, A.: Incorporating expert feedback into active anomaly discovery. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 853–858 (2016). https://doi.org/10.1109/ICDM.2016.0102

  24. Yin, W., Kann, K., Yu, M., Schütze, H.: Comparative study of CNN and RNN for natural language processing (2017). https://arxiv.org/abs/1702.01923

  25. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classification. ArXiv:1509.01626 [Cs] (2015). http://arxiv.org/abs/1509.01626

  26. The Xapian Project (n.d.). https://xapian.org/. Assessed 28 June 2018

  27. Welcome to Python.org (n.d.). https://www.python.org/. Assessed 28 June 2018

  28. TensorFlow (n.d.). https://www.tensorflow.org/. Assessed 28 June 2018

  29. Palinkas, L.A., Horwitz, S.M., Green, C.A., Wisdom, J.P., Duan, N., Hoagwood, K.: Purposeful sampling for qualitative data collection and analysis in mixed method implementation research. Adm. Policy Ment. Health 42(5), 533–544 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

MP, JB, and XD are in part supported by US NSF grant SES 1734134.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Prosperi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, X., Bian, J., Prosperi, M. (2019). An Operational Deep Learning Pipeline for Classifying Life Events from Individual Tweets. In: Lossio-Ventura, J., Muñante, D., Alatrista-Salas, H. (eds) Information Management and Big Data. SIMBig 2018. Communications in Computer and Information Science, vol 898. Springer, Cham. https://doi.org/10.1007/978-3-030-11680-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11680-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11679-8

  • Online ISBN: 978-3-030-11680-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics