Skip to main content

Multivariate Discrimination Model for TNT and Gunpowder Using an Electronic Nose Prototype: A Proof of Concept

  • Conference paper
  • First Online:
Information Technology and Systems (ICITS 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 918))

Included in the following conference series:

Abstract

In this work a proof of concept for discriminating explosive substances is presented, where a discrimination model for the classification of TNT and gunpowder is developed. An electronic nose was designed for sensing volatile organic compounds present in TNT and gunpowder, and a model that combines Principal Component Analysis and Fisher Discriminant Analysis was built for enhancing class discrimination. The model was tested in two scenarios: discriminating among the two explosive substances and one non-explosive, and discriminating between explosives and non-explosives, obtaining better results in the second case. In order to test model confidence a permutation test was used proving an accuracy of 67% with a p-value <0.01 for the first scenario, and an accuracy of 86.6% for the second one. These results make us think that by enhancing the prototype characteristics in both hardware and software, we would be able to achieve better results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gui, Y., Xie, C., Xu, J., Wang, G.: Detection and discrimination of low concentration explosives using MOS nanoparticle sensors. J. Hazard. Mater. 164, 1030–1035 (2009)

    Article  Google Scholar 

  2. Redacción el Comercio: Gobierno confirma secuestro de equipo periodístico de EL COMERCIO en Mataje (2018). http://www.elcomercio.com/actualidad/mataje-secuestro-equipoperiodistas-elcomercio-ecuador.html

  3. Castillo Egüez, J.L.: Armas de fuego y políticas públicas (Ecuador 2.009–2.015) (Opinión) (2015)

    Google Scholar 

  4. Nebbia, G., Pesente, S., Lunardon, M., Moretto, S., Viesti, G., Cinausero, M., Barbui, M., Fioretto, E., Filippini, V., Sudac, D., Nađ, K., Blagus, S., Valković, V.: Detection of hidden explosives in different scenarios with the use of nuclear probes. Nucl. Phys. A 752, 649–658 (2005)

    Article  Google Scholar 

  5. Aleksandrov, V.D., Bogolubov, E.P., Bochkarev, O.V., Korytko, L.A., Nazarov, V.I., Polkanov, Y.G., Ryzhkov, V.I., Khasaev, T.O.: Application of neutron generators for high explosives, toxic agents and fissile material detection. Appl. Radiat. Isot. 63, 537–543 (2005)

    Article  Google Scholar 

  6. Barthet, C., Montméat, P., Eloy, N., Prené, P.: Detection of explosives vapours using a multi-quartz crystal microbalance system. Procedia Eng. 5, 472–475 (2010)

    Article  Google Scholar 

  7. Brudzewski, K., Osowski, S., Pawlowski, W.: Metal oxide sensor arrays for detection of explosives at sub-parts-per million concentration levels by the differential electronic nose. Sens. Actuators B: Chem. 161, 528–533 (2012)

    Article  Google Scholar 

  8. Guillemot, M., Dayber, F., Montméat, P., Barthet, C., Prené, P.: Detection of explosives vapours on quartz crystal microbalances: generation of very low-concentrated vapours for sensors calibration. Procedia Chem. 1, 967–970 (2009)

    Article  Google Scholar 

  9. Rousier, R., Bouat, S., Bordy, T., Grateau, H., Darboux, M., Hue, J., Gaillard, G., Besnard, S., Veignal, F., Montméat, P., Lebrun, G., Larue, A.: T-REX: a portable device to detect and identify explosives vapors. Procedia Eng. 47, 390–393 (2012)

    Article  Google Scholar 

  10. Stetter, J.R., Strathmann, S., McEntegart, C., Decastro, M., Penrose, W.R.: New sensor arrays and sampling systems for a modular electronic nose. Sens. Actuators B: Chem. 69, 410–419 (2000)

    Article  Google Scholar 

  11. Röck, F., Barsan, N., Weimar, U.: Electronic nose: current status and future trends. Chem. Rev. 108, 705–725 (2008)

    Article  Google Scholar 

  12. Lopez, P., Trivino, R., Calderon, D., Arcentales, A., Guaman, A.V.: Electronic nose prototype for explosive detection. Presented at the 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Chile, October 2017

    Google Scholar 

  13. Banerjee, R., Tudu, B., Bandyopadhyay, R., Bhattacharyya, N.: A review on combined odor and taste sensor systems. J. Food Eng. 190, 10–21 (2016)

    Article  Google Scholar 

  14. Di Carlo, S., Falasconi, M.: Drift correction methods for gas chemical sensors in artificial olfaction systems: techniques and challenges. In: Advances in Chemical Sensors, p. 326. InTech, Rijeka (2012)

    Google Scholar 

  15. Jollife, I.T.: Principal Component Analysis. Springer, New York (2002)

    Google Scholar 

  16. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification (Pt. 1). Wiley, New York (2001)

    MATH  Google Scholar 

  17. Wang, M., Perera, A., Gutierrez-Osuna, R.: Principal discriminants analysis for small-sample-size problems: application to chemical sensing. 2004 Presented at the Sensors. IEEE (2004)

    Google Scholar 

  18. Luo, D., Ding, C., Huang, H.: Linear discriminant analysis: new formulation and overfit analysis. In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, pp. 417–422 (2011)

    Google Scholar 

  19. Gupta, V., Mittal, M.: KNN and PCA classifier with Autoregressive modelling during different ECG signal interpretation. Procedia Comput. Sci. 125, 18–24 (2018)

    Article  Google Scholar 

  20. Arlot, S., Celisse, A.: A survey of cross-validation procedures for model selection. Stat. Surv. 4, 40–79 (2010)

    Article  MathSciNet  Google Scholar 

  21. Good, P.I.: Permutation, Parametric, and Bootstrap Tests of Hypotheses. Springer-Verlag, New York (2005)

    MATH  Google Scholar 

  22. Mukherjee, S., Golland, P., Panchenko, D.: Permutation Tests for Classification. Massachusetts Institute of Technology, Cambridge, #2003-019 (2003)

    Google Scholar 

  23. Ojala, M.: Permutation tests for studying classifier performance. J. Mach. Learn. Res. 11, 1833–1863 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was founded by Universidad de las Fuerzas Armadas ESPE under the project 2016-pic-009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana V. Guaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guaman, A.V., Lopez, P., Torres-Tello, J. (2019). Multivariate Discrimination Model for TNT and Gunpowder Using an Electronic Nose Prototype: A Proof of Concept. In: Rocha, Á., Ferrás, C., Paredes, M. (eds) Information Technology and Systems. ICITS 2019. Advances in Intelligent Systems and Computing, vol 918. Springer, Cham. https://doi.org/10.1007/978-3-030-11890-7_28

Download citation

Publish with us

Policies and ethics