Abstract
The T wave alternans (TWA) is an important phenomenon not only within the clinical field but within the scientific and technological field, it has been considered an important, non-invasive, very promising indicator to stratify the risk of sudden cardiac death. Due to its microvolt amplitude and background noises, sophisticated signal processing techniques are required for its detection and estimation. In this paper we present a survey of the state of the art focusing to detect sudden cardiac death by analyzing the T wave on long-term ECG signals.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gimeno-Blanes, F.J., Blanco-Velasco, M., Barquero-Pérez, Ó., García-Alberola, A., Rojo-álvarez, J.L.: Sudden cardiac risk stratification with electrocardiographic indices - a review on computational processing, technology transfer, and scientific evidence. Front. Physiol. 7, 1–17 (2016)
Narayan, S., Botteron, G., Smith, J.: T-wave alternans spectral magnitude is sensitive to electrocardiographic beat alignment strategy. 24(ii), 593–596 (1997)
Pham, Q., Quan, K.J., Rosenbaum, D.S.: T-wave alternans: marker, mechanism, and methodology for predicting sudden cardiac death. J. Electrocardiol. 36, 75–81 (2003)
Monasterio, V., Clifford, G.D., Laguna, P., Martí Nez, J.P.: A multilead scheme based on periodic component analysis for T-wave alternans analysis in the ECG. Ann. Biomed. Eng. 38(8), 2532–2541 (2010)
World Health Organization: The top 10 causes of death (2014)
Shen, T.W., Tsao, Y.T.: An improved spectral method of detecting and quantifying T-wave alternans for SCD risk evaluation. Comput. Cardiol. 35, 609–612 (2008)
Ghoraani, B., Krishnan, S., Selvaraj, R.J., Chauhan, V.S.: T wave alternans evaluation using adaptive time-frequency signal analysis and non-negative matrix factorization. Med. Eng. Phys. 33(6), 700–711 (2011)
Valverde, E., Arini, P.: Study of T-wave spectral variance during acute myocardial ischemia, pp. 653–656 (2012)
Murukesan, L., Murugappan, M., Iqbal, M.: Sudden cardiac death prediction using ECG signal derivative (heart rate variability): a review, pp. 8–10 (2013)
INEC: Principales causas de mortalidad
Chugh, S.S.: Early identification of risk factors for sudden cardiac death. Nat. Rev. Cardiol. 7(6), 318 (2010)
Irshad, A., Bakhshi, A.D., Bashir, S.: *Department of Electrical Engineering, College of Electrical and Mechanical Engineering, National University of Science and Technology, Islamabad, Pakistan. **Department of Electrical Engineering, University of Engineering and Technology, Lahore, Pakistan, pp. 222–227 (2015)
Blanco-Velasco, M., Cruz-Roldán, F., Godino-Llorente, J.I., Barner, K.E.: Nonlinear trend estimation of the ventricular repolarization segment for T-wave alternans detection. IEEE Trans. Biomed. Eng. 57(10 PART 1), 2402–2412 (2010)
Martínez, J.P., Olmos, S.: Methodological principles of T wave alternans analysis: a unified framework. IEEE Trans. Biomed. Eng. 52(4), 599–613 (2005)
Adam, D.R., Smith, J., Akselrod, S., Nyberg, S., Powell, A.O., Cohen, R.J.: Fluctuations in T-wave morphology and susceptibility to ventricular fibrillation. J. Electrocardiol. 17, 209–218 (1984)
Haghjoo, M., Arya, A., Sadr-Ameli, M.A.: Microvolt T-wave alternans: a review of techniques, interpretation, utility, clinical studies, and future perspectives. Int. J. Cardiol. 109(3), 293–306 (2006)
Nemati, S., Abdala, O., Monasterio, V., Yim-Yeh, S., Malhotra, A., Clifford, G.D.: A nonparametric surrogate-based test of significance for T-wave alternans detection. IEEE Trans. Biomed. Eng. 58(5), 1356–1364 (2011)
Iravanian, S., Kanu, U.B., Christini, D.J.: A class of Monte-Carlo-based statistical algorithms for efficient detection of repolarization alternans. IEEE Trans. Biomed. Eng. 59(7), 1882–1891 (2012)
Stroobandt, R.X., Barold, S.S., Sinnaeve, A.F.: ECG from basics to essentials: step by step (2016)
Tompkins, W.J.: Biomedical Digital Signal Processing: C-Language Examples and Laboratory Experiments for the IBM PC. Prentice Hall, Hauptbd (2000)
Nearing, B.D., Verrier, R.L.: Modified moving average analysis of T-wave alternans to predict ventricular fibrillation with high accuracy. J. Appl. Physiol. 92(2), 541–549 (2002)
Martínez, J.P., Olmos, S.: A robust T wave alternans detector based on the GLRT for Laplacian noise distribution. In: Computers in Cardiology, pp. 677–680. IEEE (2002)
Bashir, S., Bakhshi, A.D., Maud, M.A.: A template matched-filter based scheme for detection and estimation of T-wave alternans. Biomed. Signal Process. Control 13(1), 247–261 (2014)
Fujita, H., Acharya, U.R., Sudarshan, V.K., Ghista, D.N., Sree, S.V., Eugene, L.W.J., Koh, J.E.: Sudden Cardiac Death (SCD) prediction based on nonlinear heart rate variability features and SCD index. Appl. Soft Comput. J. 43, 510–519 (2016)
Gualsaqui Miranda, M.V., Vizcaino Espinosa, I.P., Flores Calero, M.J.: ECG signal features extraction. Ecuador Technical Chapters Meeting (ETCM), pp. 1–6. IEEE (2016)
Goya-Esteban, R., Barquero-Perez, O., Blanco-Velasco, M., Caamano-Fernandez, A.J., Garcia-Alberola, A., Rojo-Alvarez, J.L.: Nonparametric signal processing validation in T-wave alternans detection and estimation. IEEE Trans. Biomed. Eng. 61(4), 1328–1338 (2014)
Cuesta-Frau, D., Micó-Tormos, P., Aboy, M., Biagetti, M.O., Austin, D., Quinteiro, R.A.: Enhanced modified moving average analysis of T-wave alternans using a curve matching method: a simulation study. Med. Biol. Eng. Comput. 47(3), 323–331 (2009)
Smith, J.M., Clancy, E.A., Valeri, C.R., Ruskin, J.N., Cohen, R.J.: Electrical alternans and cardiac electrical instability. Circulation 77(1), 110–121 (1988)
Nearing, B.D., Huang, A.H., Verrier, R.L.: Dynamic tracking of cardiac vulnerability by complex demodulation of the T wave. Science 252(5004), 437–440 (1991)
Burattini, L., Zareba, W., Couderc, J., Titlebaum, E., Moss, A.: Computer detection of non-stationary T wave alternans using a new correlation method. In: Computers in Cardiology, pp. 657–660. IEEE (1997)
Noohi, M., Sadr, A.: T wave detection by correlation method in the ECG signal. In: The 2nd International Conference on Computer and Automation Engineering (ICCAE), vol. 5, pp. 550–552 (2010)
Laguna, P., Ruiz, M., Moody, G., Mark, R.: Repolarization alternans detection using the KL transform and the beatquency spectrum. In: Computers in Cardiology, pp. 673–676. IEEE (1996)
Martinez, J.P., Olmos, S., Laguna, P.: Simulation study and performance evaluation of T-wave alternans detector. In: Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 3, pp. 2291–2297. IEEE (2000)
Srikanth, T., Lin, D., Kanaan, N., Gu, H.: Presence of T wave alternans in the statistical context-a new approach to low amplitude alternans measurement. Comput. Cardiol. 29, 681–684 (2002)
Strumillo, P., Ruta, J.: Poincare mapping for detecting abnormal dynamics of cardiac repolarization. IEEE Eng. Med. Biol. Mag. 21(1), 62–65 (2002)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Betancourt, N., Almeida, C., Flores-Calero, M. (2019). T Wave Alternans Analysis in ECG Signal: A Survey of the Principal Approaches. In: Rocha, Á., Ferrás, C., Paredes, M. (eds) Information Technology and Systems. ICITS 2019. Advances in Intelligent Systems and Computing, vol 918. Springer, Cham. https://doi.org/10.1007/978-3-030-11890-7_41
Download citation
DOI: https://doi.org/10.1007/978-3-030-11890-7_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11889-1
Online ISBN: 978-3-030-11890-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)