Abstract
The present study proposes the implementation of an algorithm to determine the degree of reliability of Business to Consumer Facebook fan pages, to mitigate possible cheating, scams or fraud. We use data mining to filter information from comments expressed by online stores’ customers. The experiment determines a word dictionary to find matches using a Natural Language Processing technique. The main contribution of this research is the analysis of the context of online stores followers and customers that use Facebook as a business tool, this analysis is based on comments as opposed to the classic way of counting the number of likes. This analysis discards wrong and miswritten comments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
INEC. Encuesta de Condiciones de vida realizada por el Instituto Nacional de Estadísticas y Censos. Quito (2014)
Ecommerce en Ecuador: Datos interesantes | elEmprendedor.ec, El Emprendedor, 05 July 2013
Haucap, J., Heimeshoff, U.: Google, Facebook, Amazon, eBay: is the internet driving competition or market monopolization? University of Düsseldorf, Düsseldorf Institute for Competition Economics (DICE), no. 83 (2013)
Overview - Graph API - Documentation, Facebook for Developers. https://developers.facebook.com/docs/graph-api/overview. Accessed 23 Sept 2018
Project Management Institute: Guía de los Fundamentos Para la Dirección de Proyectos, 5th edn. Project Management Institute (2014)
Virla, M.Q.: Confiabilidad y coeficiente Alpha de Cronbach, September 2018
Pruebas y evaluacion psicologicas: introduccion a las pruebas y a la medicion | ronald jay cohen | comprar libro 9789701057049. https://www.casadellibro.com/libro-pruebas-y-evaluacion-psicologicas-introduccion-a-las-pruebas-y-a-la-medicion/9789701057049/1094006. Accessed 23 Sept 2018
Mosley, R.: Social media analytics: data mining applied to insurance twitter posts. In: Casualty Actuarial Society E-Forum, Winter 2012, vol. 2 (2012)
Martel, W.: Determinación de niveles de agresividad en comentarios de la red social Facebook por medio de Minería de Texto (2016)
Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., Fienberg, S.: Adaptive name matching in information integration. IEEE Intell. Syst. 18(5), 16–23 (2003)
Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string distance metrics for name-matching tasks. In: Proceedings of the 2003 International Conference on Information Integration on the Web, Acapulco, Mexico, pp. 73–78 (2003)
Peng, T., Li, L., Kennedy, J.: A comparison of techniques for name matching. GSTF J. Comput. JoC 2(1), 55–61 (2018)
Miguélez, M.M.: Validez y confiabilidad en la metodología cualitativa. Paradigma 27(2), 7–33 (2016)
Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string metrics for matching names and records. In: KDD Workshop on Data Cleaning and Object Consolidation, vol. 3, pp. 73–78 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Jácome, D., Tapia, F., Lascano, J.E., Fuertes, W. (2019). Contextual Analysis of Comments in B2C Facebook Fan Pages Based on the Levenshtein Algorithm. In: Rocha, Á., Ferrás, C., Paredes, M. (eds) Information Technology and Systems. ICITS 2019. Advances in Intelligent Systems and Computing, vol 918. Springer, Cham. https://doi.org/10.1007/978-3-030-11890-7_51
Download citation
DOI: https://doi.org/10.1007/978-3-030-11890-7_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11889-1
Online ISBN: 978-3-030-11890-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)