Skip to main content

Electro-Photonic Chip-Scale Microsystem for Label-Free Single Bacteria Monitoring

  • Conference paper
  • First Online:
Applications in Electronics Pervading Industry, Environment and Society (ApplePies 2018)

Abstract

Monitoring of bacteria metabolism/viability at single level during the antibiotics action is a crucial functionality for systems supporting the development of new drugs able to kill bacteria resistant to all or nearly all antibiotics currently available. In this paper, we report on an electro-photonic chip-scale microsystem including an array of photonic nanocavities each able to trap a single bacterium. By monitoring the spectral response of the nanophotonic cavities and the electrical impedance across the trapping sites, a detailed knowledge of the metabolic state of trapped bacteria can be obtained. By three-dimensional simulations based on the finite element method, we predict a high electrical detection resolution of the microsystem, with a current variation of a factor 12 between dead and live bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Estevez, M., Alvarez, M., Lechuga, L.: Integrated optical devices for lab-on-a-chip biosensing applications. Laser Photon. Rev. 6, 463–487 (2012)

    Article  Google Scholar 

  2. Ciminelli, C., Campanella, C.M., Dell’Olio, F., Campanella, C.E., Armenise, M.N.: Labelfree optical resonant sensors for biochemical applications. Prog. Quantum Electron. 37, 51–107 (2013)

    Article  Google Scholar 

  3. Fernández Gavela, A., Grajales García, D., Ramirez, J.C., Lechuga, L.M.: Last advances in silicon-based optical biosensors. Sensors 16, 285 (2016)

    Article  Google Scholar 

  4. Ciminelli, C., Dell’Olio, F., Conteduca, D., Campanella, C.M., Armenise, M.N.: High performance SOI microring resonator for biochemical sensing. Opt. Laser Technol. 59, 60–67 (2014)

    Article  Google Scholar 

  5. Dell’Olio, F., Conteduca, D., Ciminelli, C., Armenise, M.N.: New ultrasensitive resonant photonic platform for label-free biosensing. Opt. Express 23, 28593–28604 (2015)

    Article  Google Scholar 

  6. Dell’Olio, F., Conteduca, D., De Palo, M., Ciminelli, C.: Design of a new ultracompact resonant plasmonic multi-analyte label-free biosensing platform. Sensors 17, 1810 (2017)

    Article  Google Scholar 

  7. Prestinaci, F., Pezzotti, P., Pantosti, A.: Antimicrobial resistance: a global multifaceted phenomenon. Pathog. Glob. Health 109, 309–318 (2015)

    Article  Google Scholar 

  8. http://www.who.int/antimicrobial-resistance/en/

  9. Jasovsky, D., Littmann, J., Zorzet, A., Cars, O.: Antimicrobial resistance – a threat to the world’s sustainable development. Upsala J. Med. Sci. 121, 159–164 (2016)

    Article  Google Scholar 

  10. Dickson, R.P., Singer, B.H., Newstead, M.W., Falkowski, N.R., Erb-Downward, J.R., Standiford, T.J., Huffnagle, G.B.: Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat. Microbiol. 1, 16113 (2016)

    Article  Google Scholar 

  11. Khan, M.M.T., Pyle, B.H., Camper, A.K.: Specific and rapid enumeration of viable but nonculturable and viable- culturable gram-negative bacteria by using flow cytometry. Appl. Environ. Microbiol. 76, 5088–5096 (2010)

    Article  Google Scholar 

  12. Zhou, H., Yang, D., Ivleva, N.P., Mircescu, N.E., Schubert, S., Niessner, R., Wieser, A., Haisch, C.: Label-free in situ discrimination of live and dead bacteria by surface enhanced Raman scattering. Anal. Chem. 87, 6553–6561 (2015)

    Article  Google Scholar 

  13. Yang, L., Li, Y., Griffis, C.L., Johnson, M.G.: Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium. Biosens. Bioelectron. 19, 1139–1147 (2004)

    Article  Google Scholar 

  14. Safavieh, M., Pandya, H.J., Venkataraman, M., Thirumalaraju, P., Kanakasabapathy, M.K., Singh, A., Prabhakar, D., Chug, M.K., Shafiee, H.: Rapid real-time antimicrobial susceptibility testing with electrical sensing on plastic microphotonics with printed electrodes. Appl. Mater. Interfaces 9, 12832–12840 (2017)

    Article  Google Scholar 

  15. Conteduca, D., Dell’Olio, F., Brunetti, G., Krauss, T.F., Ciminelli, C., Armenise, M.N.: High-efficiency optoelectronic system for monitoring of antimicrobial resistance (AMR) in bacteria. In: 20th Italian National Conference on Photonic Technologies (Fotonica 2018), Lecce, Italy (2018)

    Google Scholar 

  16. Akahane, Y., Asano, T., Song, B.S., Noda, S.: High-Q photonic nanocavity in a twodimensional photonic crystal. Nature 425, 944–947 (2003)

    Article  Google Scholar 

  17. Portalupi, L., Galli, M., Reardon, C., Krauss, T.F., O’Faolain, L., Andreani, L.C., Gerace, D.: Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor. Opt. Express 18, 16064–16073 (2010)

    Article  Google Scholar 

  18. Galli, M., Portalupi, S.L., Belotti, M., Andreani, L.C., O’Faolain, L., Krauss, T.F.: Light scattering and fano resonances in high-Q photonic crystal nanocavities. Appl. Phys. Lett. 94, 071101 (2009)

    Article  Google Scholar 

  19. Terisod, R., Tardif, M., Marcoux, P. R., Picard, E., Hadji, E., Peyrade, D., Houdrè, R.: Optical trapping of living bacteria in 2D hollow photonic crystal cavities. In: Conference on Laser and Electro-optics (CLEO 2018), San Jose, California, USA (2018)

    Google Scholar 

  20. Delcour, A.H.: Outer membrane permeability and antibiotic resistance. Bioch. et Biophys. Acta 1794, 808–816 (2009)

    Article  Google Scholar 

  21. Liu, P.Y., Chin, K., Ser, W., Ayi, T.C., Yap, P.H., Bourouina, T., Leprince-Wang, Y.: Real-time measurement of single bacterium’s refractive index using optofluidic immersion refractometry. Procedia Eng. 87, 356–359 (2014)

    Article  Google Scholar 

  22. Bai, W., Zhao, K.S., Asami, K.: Dielectric properties of E.coli cell as simulated by the three shell spheroidal model. Biophys. Chem. 122, 136–142 (2006)

    Article  Google Scholar 

  23. Conteduca, D., Reardon, C., Scullion, M.G., Dell’Olio, F., Armenise, M.N., Krauss, T.F., Ciminelli, C.: Ultra-high Q/V hybrid cavity for strong light-matter interaction. APL Photonics 2, 086101 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caterina Ciminelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dell’Olio, F. et al. (2019). Electro-Photonic Chip-Scale Microsystem for Label-Free Single Bacteria Monitoring. In: Saponara, S., De Gloria, A. (eds) Applications in Electronics Pervading Industry, Environment and Society. ApplePies 2018. Lecture Notes in Electrical Engineering, vol 573. Springer, Cham. https://doi.org/10.1007/978-3-030-11973-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11973-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11972-0

  • Online ISBN: 978-3-030-11973-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics