Abstract
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. The atrial segmentation is essential for the understanding of the human atria structure which is vital to the AF treatment. In this paper, we propose a novel three-dimensional (3D) segmentation network combining hierarchical aggregation and attention mechanism for 3D left atrial segmentation, named attention based hierarchical aggregation network (HAANet). In our network, the shallow and deep feature fusion capability of encoder-decoder convolutional neural networks is enhanced through hierarchical aggregation. Besides, attention mechanism is adopted to promote the ability of extracting efficient features. Experimental results demonstrate the HAANet can produce good results for 3D left atrial segmentation and the dice score of our HAANet reaches 92.30.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
McGann, C., et al.: Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI. Circ. Arrhythm. Electrophysiol. 7, 23–30 (2013)
Hansen, B.J., et al.: Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts. Eur. Heart J. 36(35), 2390–2401 (2015)
Zhao, J., et al.: Three-dimensional integrated functional, structural, and computational mapping to define the structural “fingerprints” of heart-specific atrial fibrillation drivers in human heart ex vivo. J. Am. Heart Assoc. 6(8), e005922 (2017)
Mortazi, A., Karim, R., Rhode, K., Burt, J., Bagci, U.: CardiacNET: segmentation of left atrium and proximal pulmonary veins from MRI using multi-view CNN. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017, Part II. LNCS, vol. 10434, pp. 377–385. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_43
Chen, J., et al.: Multiview two-task recursive attention model for left atrium and atrial scars segmentation. arXiv preprint arXiv:1806.04597 (2018)
Xingjian, S.H., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., Woo, W.-C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016, Part II. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Yu, F., Wang, D., Darrell, T.: Deep layer aggregation. arXiv preprint arXiv:1707.06484 (2017)
Wang, F., et al.: Residual attention network for image classification. arXiv preprint arXiv:1704.06904 (2017)
Kingma, D.P., Adam, J.B.: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Acknowledgment
This work is supported by grants from Shenzhen Key Laboratory of Virtual Reality and Human Interaction Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China (No. ZDSYS201605101739178), Natural Science Foundation of Guangdong (No. 2018A030313100), Research Grants Council of the Hong Kong Special Administrative Region (No. GRF 14225616), Guangdong Province Science and Technology Plan Project (No. 2016A020220013), the Science and Technology Plan Project of Guangzhou (No. 201704020141) and China Posdoctoral Science Foundation (No. 2017M622831).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, C. et al. (2019). Attention Based Hierarchical Aggregation Network for 3D Left Atrial Segmentation. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. STACOM 2018. Lecture Notes in Computer Science(), vol 11395. Springer, Cham. https://doi.org/10.1007/978-3-030-12029-0_28
Download citation
DOI: https://doi.org/10.1007/978-3-030-12029-0_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-12028-3
Online ISBN: 978-3-030-12029-0
eBook Packages: Computer ScienceComputer Science (R0)