Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11395))

  • 1837 Accesses

Abstract

Training an ensemble of convolutional neural networks requires much computational resources for a large set of high-resolution medical 3D scans because deep representation requires many parameters and layers. In this study, 100 3D late gadolinium-enhanced (LGE)-MRIs with a spatial resolution of 0.625 mm × 0.625 mm × 0.625 mm from patients with atrial fibrillation were utilized. To contain cost of the training, down-sampling of images, transfer learning and ensemble of network’s past weights were deployed. This paper proposes an image processing stage using down-sampling and contrast limited adaptive histogram equalization, a network training stage using a cyclical learning rate schedule, and a testing stage using an ensemble. While this method achieves reasonable segmentation accuracy with the median of the Dice coefficients at 0.87, this method can be used on a computer with a GPU that has a Kepler architecture and at least 3 GB memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canziani, A., Paszke, A., Culurciello, E.: An analysis of deep neural network models for practical applications. arXiv preprint arXiv:1605.07678 (2016)

  2. Boulch, A.: ShaResNet: reducing residual network parameter number by sharing weights. arXiv preprint arXiv:1702.08782 (2017)

  3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  4. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. arXiv preprint arXiv:1711.01468 (2017)

  5. McGann, C., et al.: Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI. Circ. Arrhythmia Electrophysiol. 7(1), 23–30 (2014)

    Article  Google Scholar 

  6. Girshick, R.: Fast R-CNN, arXiv preprint arXiv:1504.08083 (2015)

  7. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)

    Google Scholar 

  8. Iandola, F., Moskewicz, M., Karayev, S., Girshick, R., Darrell, T., Keutzer, K.: Densenet: implementing efficient convnet descriptor pyramids. arXiv preprint arXiv:1404.1869 (2014)

  9. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  10. Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J.E., Weinberger, K.Q.: Snapshot ensembles: train 1, get M for free. arXiv preprint arXiv:1704.00109 (2017)

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Tieleman, T., Hinton, G.: Lecture 6.5 - RMSProp, COURSERA: Neural Networks for Machine Learning. Technical report (2012)

    Google Scholar 

  13. Smith, L.N.: Cyclical learning rates for training neural networks. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 464–472 (2017)

    Google Scholar 

  14. Loshchilov, I., Hutter, F.: SGDR: Stochastic Gradient Descent with Warm Restarts. arXiv preprint arXiv:1608.03983 (2016)

  15. Hansen, B.J., et al.: Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts. Eur. Heart J. 36(35), 2390–2401 (2015)

    Article  Google Scholar 

  16. Zhao, J., et al.: Three-dimensional integrated functional, structural, and computational mapping to define the structural ‘Fingerprints’ of heart-specific atrial fibrillation drivers in human heart ex vivo. J. Am. Heart Assoc. 6(8), e005922 (2017)

    Google Scholar 

  17. Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Heckbert, P.S. (eds.) Graphics Gems, pp. 474–485. Academic Press, Cambridge (1994)

    Chapter  Google Scholar 

  18. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  19. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)

    Google Scholar 

  20. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 424–432 (2016)

    Chapter  Google Scholar 

  21. Milletari, F., Navab, N., Ahmadi, S.-A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571 (2016)

    Google Scholar 

  22. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  23. Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imag. 35(5), 1240–1251 (2016)

    Article  Google Scholar 

  24. Xiong, Z., Fedorov, V., Fu, X., Cheng, E., Macleod, R., Zhao, J.: Fully automatic left atrium segmentation from late gadolinium enhanced magnetic resonance imaging using a dual fully convolutional neural network. IEEE Trans. Med. Imag. (2018) (in Press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilson Fok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fok, W., Jamart, K., Zhao, J., Fernandez, J. (2019). Ensemble of Convolutional Neural Networks for Heart Segmentation. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. STACOM 2018. Lecture Notes in Computer Science(), vol 11395. Springer, Cham. https://doi.org/10.1007/978-3-030-12029-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12029-0_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12028-3

  • Online ISBN: 978-3-030-12029-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics