Abstract
Cardiovascular diseases are among the leading causes of death globally. Cardiac left ventricle (LV) quantification is known to be one of the most important tasks for the identification and diagnosis of such pathologies. In this paper, we propose a deep learning method that incorporates 3D spatio-temporal convolutions to perform direct left ventricle quantification from cardiac MR sequences. Instead of analysing slices independently, we process stacks of temporally adjacent slices by means of 3D convolutional kernels which fuse the spatio-temporal information, incorporating the temporal dynamics of the heart to the learned model. We show that incorporating such information by means of spatio-temporal convolutions into standard LV quantification architectures improves the accuracy of the predictions when compared with single-slice models, achieving competitive results for all cardiac indices and significantly breaking the state of the art [10] for cardiac phase estimation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
LVQuan Challenge website: https://lvquan18.github.io/.
- 2.
The source code for the proposed architecture is publicly available at https://github.com/alejandrodebus/SpatioTemporalCNN_lvquan.
References
Ferrante, E., Oktay, O., Glocker, B., Milone, D.H.: On the adaptability of unsupervised CNN-based deformable image registration to unseen image domains. In: Shi, Y., Suk, H.-I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 294–302. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00919-9_34
Karamitsos, T.D., Francis, J.M., Myerson, S., Selvanayagam, J.B., Neubauer, S.: The role of cardiovascular magnetic resonance imaging in heart failure. J. Am. Coll. Cardiol. 54(15), 1407–1424 (2009)
Peng, P., Lekadir, K., Gooya, A., Shao, L., Petersen, S.E., Frangi, A.F.: A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging. Magn. Reson. Mater. Phys. Biol. Med. 29(2), 155–195 (2016)
Petitjean, C., Dacher, J.N.: A review of segmentation methods in short axis cardiac MR images. Med. Image Anal. 15(2), 169–184 (2011)
Poudel, R.P.K., Lamata, P., Montana, G.: Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation. In: Zuluaga, M.A., Bhatia, K., Kainz, B., Moghari, M.H., Pace, D.F. (eds.) RAMBO/HVSMR-2016. LNCS, vol. 10129, pp. 83–94. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52280-7_8
Suinesiaputra, A., et al.: Quantification of LV function and mass by cardiovascular magnetic resonance: multi-center variability and consensus contours. J. Cardiovasc. Magn. Reson. 17(1), 63 (2015)
Tan, L.K., Liew, Y.M., Lim, E., McLaughlin, R.A.: Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences. Med. Image Anal. 39, 78–86 (2017)
Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: IEEE International Conference on Computer Vision (ICCV), pp. 4489–4497. IEEE (2015)
Tran, P.V.: A fully convolutional neural network for cardiac segmentation in short-axis MRI. arXiv preprint arXiv:1604.00494 (2016)
Xue, W., Brahm, G., Pandey, S., Leung, S., Li, S.: Full left ventricle quantification via deep multitask relationships learning. Med. Image Anal. 43, 54–65 (2018)
Xue, W., Lum, A., Mercado, A., Landis, M., Warrington, J., Li, S.: Full quantification of left ventricle via deep multitask learning network respecting intra- and inter-task relatedness. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 276–284. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_32
Xue, W., Nachum, I.B., Pandey, S., Warrington, J., Leung, S., Li, S.: Direct estimation of regional wall thicknesses via residual recurrent neural network. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 505–516. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_40
Acknowledgements
The present work used computational resources of the Pirayu Cluster, acquired with funds from the Santa Fe Science, Technology and Innovation Agency (ASACTEI), Government of the Province of Santa Fe, through Project AC-00010-18, Resolution No. 117/14. This equipment is part of the National System of High Performance Computing of the Ministry of Science, Technology and Productive Innovation of the Republic of Argentina. We also thank NVidia for the donation of a GPU used for this project. Enzo Ferrante is a beneficiary of an AXA Research Fund grant.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Debus, A., Ferrante, E. (2019). Left Ventricle Quantification Through Spatio-Temporal CNNs. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. STACOM 2018. Lecture Notes in Computer Science(), vol 11395. Springer, Cham. https://doi.org/10.1007/978-3-030-12029-0_50
Download citation
DOI: https://doi.org/10.1007/978-3-030-12029-0_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-12028-3
Online ISBN: 978-3-030-12029-0
eBook Packages: Computer ScienceComputer Science (R0)