Skip to main content

An Efficient Private Evaluation of a Decision Graph

  • Conference paper
  • First Online:
Information Security and Cryptology – ICISC 2018 (ICISC 2018)

Abstract

A decision graph is a well-studied classifier and has been used to solve many real-world problems. We assumed a typical scenario between two parties in this study, in which one holds a decision graph and the other wants to know the class label of his/her query without disclosing the graph and query to the other. We propose a novel protocol for this scenario that can obliviously evaluate a graph that is designed by an efficient data structure called the graph level order unary degree sequence (GLOUDS). The time and communication complexities of this protocol are linear to the number of nodes in the graph and do not include any exponential factors. The experiment results revealed that the actual runtime and communication size were well concordant with theoretical complexities. Our method can process a graph with approximately 500 nodes in only 11 s on a standard laptop computer. We also compared the runtime of our method with that of previous methods and confirmed that it was one order of magnitude faster than the previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amazon machine learning - predictive analytics with AWS (2017). https://aws.amazon.com/aml/

  2. Google cloud machine learning at scale | google cloud platform (2017). https://cloud.google.com/products/machine-learning/

  3. Microsoft Azure: Machine learning (2017). https://azure.microsoft.com

  4. Barni, M., Failla, P., Kolesnikov, V., Lazzeretti, R., Sadeghi, A.-R., Schneider, T.: Secure evaluation of private linear branching programs with medical applications. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 424–439. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04444-1_26

    Chapter  Google Scholar 

  5. Bost, R., Popa, R., Tu, S., Goldwasser, S.: Machine learning classification over encrypted data. In: NDSS, pp. 1–14 (2015)

    Google Scholar 

  6. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote diagnostics. In: CCS. pp. 498–507. ACM Press, New York (2007)

    Google Scholar 

  7. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE TC 100(8), 677–691 (1986)

    MATH  Google Scholar 

  8. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols: Information Security and Cryptography, 1st edn. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14303-8

    Book  MATH  Google Scholar 

  9. Certicom Research: Standards for Efficient Cryptography 2 (SEC 2): Recommended elliptic curve domain parameters (2010). http://www.secg.org/sec2-v2.pdf

  10. Cock, M.D., et al.: Efficient and private scoring of decision trees, support vector machines and logistic regression models based on pre-computation. Cryptology ePrint Archive, Report 2016/736 (2016). https://eprint.iacr.org/2016/736

  11. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 103–118. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_9

    Chapter  Google Scholar 

  12. Damgård, I., Geisler, M., Krøigaard, M.: Efficient and secure comparison for on-line auctions. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 416–430. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73458-1_30

    Chapter  Google Scholar 

  13. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: CryptoNets: applying neural networks to encrypted data with high throughput and accuracy. In: ICML, pp. 201–210. JMLR (2016)

    Google Scholar 

  14. Fischer, J., Peters, D.: GLOUDS: representing tree-like graphs. Discrete Algorithms 36, 39–49 (2016)

    Article  MathSciNet  Google Scholar 

  15. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence information and basic countermeasures. In: CCS, pp. 1322–1333. ACM Press, New York (2015)

    Google Scholar 

  16. Fredrikson, M., Lantz, E., Jha, S., Lin, S.: Privacy in pharmacogenetics: an end-to-end case study of personalized warfarin dosing. In: USENIX, pp. 17–32 (2014)

    Google Scholar 

  17. Huang, C.L., Chen, M.C., Wang, C.J.: Credit scoring with a data mining approach based on support vector machines. Expert Syst. Appl. 33(4), 847–856 (2007)

    Article  Google Scholar 

  18. Jacobson, G.: Space-efficient static trees and graphs. In: FOCS, pp. 549–554. IEEE Press, New York (1989)

    Google Scholar 

  19. Kohavi, R., Li, C.H.: Oblivious decision trees graphs and top down pruning. In: IJCAI, pp. 1071–1077. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  20. Lavecchia, A.: Machine-learning approaches in drug discovery: methods and applications. Drug Discov. Today 20(3), 318–331 (2015)

    Article  Google Scholar 

  21. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via MiniONN transformations. In: CCS, pp. 619–631. ACM Press, New York (2017)

    Google Scholar 

  22. Madabhushi, A., Lee, G.: Image analysis and machine learning in digital pathology: challenges and opportunities. Med. Image Anal. 33, 170–175 (2016)

    Article  Google Scholar 

  23. Meinel, C.: Modified branching programs and their computational power. LNCS, vol. 370. Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0017563

    Book  MATH  Google Scholar 

  24. Mitsunari, S.: C++ library implementing elliptic curve Elgamal crypto system. https://github.com/herumi/mcl

  25. Mohassel, P., Niksefat, S.: Oblivious decision programs from oblivious transfer: efficient reductions. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 269–284. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3_20

    Chapter  Google Scholar 

  26. Oliveira, A.L., Sangiovanni-Vincentelli, A.: Using the minimum description length principle to infer reduced ordered decision graphs. Mach. Learn. 25(1), 23–50 (1996)

    Google Scholar 

  27. Oliver, J.J.: Decision graphs: an extension of decision trees. Technical report, Department of Computer Science, Monash University (1992)

    Google Scholar 

  28. Shimizu, K., Nuida, K., Ratsch, G.: Efficient privacy-preserving string search and an application in genomics. Bioinformatics 32(11), 1652–1661 (2016)

    Article  Google Scholar 

  29. Shotton, J., Sharp, T., Kohli, P., Nowozin, S., Winn, J., Criminisi, A.: Decision jungles: compact and rich models for classification. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) NIPS, pp. 234–242. Curran Associates Inc., New York (2013)

    Google Scholar 

  30. Tai, R.K.H., Ma, J.P.K., Zhao, Y., Chow, S.S.M.: Privacy-preserving decision trees evaluation via linear functions. In: Foley, S., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 494–512. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_27

    Chapter  Google Scholar 

  31. Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.: Privacy preserving error resilient DNA searching through oblivious automata. In: CCS, pp. 519–528. ACM Press, New York (2007)

    Google Scholar 

  32. Vaidya, J., Yu, H., Jiang, X.: Privacy-preserving SVM classification. Knowl. Inf. Syst. 14(2), 161–178 (2008)

    Article  Google Scholar 

  33. Verizon Enterprise Solutions: Verizon: IP latency statistics (2017). http://www.verizonenterprise.com/about/network/latency/

  34. Veugen, T.: Improving the DGK comparison protocol. In: WIFS, pp. 49–54. IEEE Press, New York (2012)

    Google Scholar 

  35. Wu, D.J., Feng, T., Naehrig, M., Lauter, K.: Privately evaluating decision trees and random forests. PoPETS 4, 1–21 (2016)

    Google Scholar 

  36. Yao, A.C.C.: How to generate and exchange secrets. In: FOCS, pp. 162–167. IEEE Press, New York (1986)

    Google Scholar 

Download references

Acknowledgements

A part of this work is supported by Okawa Foundation Research Grant and JST CREST grant numbers: JPMJCR1503, JPMJCR1688, JPMJCR14D6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kana Shimizu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sudo, H., Nuida, K., Shimizu, K. (2019). An Efficient Private Evaluation of a Decision Graph. In: Lee, K. (eds) Information Security and Cryptology – ICISC 2018. ICISC 2018. Lecture Notes in Computer Science(), vol 11396. Springer, Cham. https://doi.org/10.1007/978-3-030-12146-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12146-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12145-7

  • Online ISBN: 978-3-030-12146-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics