Skip to main content

The Six-Card Trick: Secure Computation of Three-Input Equality

  • Conference paper
  • First Online:
Information Security and Cryptology – ICISC 2018 (ICISC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11396))

Included in the following conference series:

Abstract

Secure computation enables parties having secret inputs to compute some function of their inputs without revealing inputs beyond the output. It is known that secure computation can be done by using a deck of physical cards. The five-card trick proposed by den Boer in 1989 is the first card-based protocol, which computes the logical AND function of two inputs. In this paper, we design a new protocol for the three-input equality function using six cards, which we call the six-card trick.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A random cut is securely implemented by a Hindu cut [17], while most of other shuffles do not have a (direct) secure implementation. Koch and Walzer [5] showed that every uniform and closed shuffles are reduced to a number of random cuts.

  2. 2.

    This technique was implicitly used in [1].

References

  1. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_27

    Chapter  Google Scholar 

  2. den Boer, B.: More efficient match-making and satisfiability the five card trick. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_23

    Chapter  Google Scholar 

  3. Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G.: Secure grouping protocol using a deck of cards. In: Shikata, J. (ed.) ICITS 2017. LNCS, vol. 10681, pp. 135–152. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72089-0_8

    Chapter  Google Scholar 

  4. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J. (eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21819-9_16

    Chapter  Google Scholar 

  5. Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography. IACR Cryptology ePrint Archive, vol. 2017, p. 423 (2017)

    Google Scholar 

  6. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a minimal number of cards. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 783–807. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_32

    Chapter  Google Scholar 

  7. Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 162–173. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39074-6_16

    Chapter  Google Scholar 

  8. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 598–606. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_36

    Chapter  Google Scholar 

  9. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8_36

    Chapter  Google Scholar 

  10. Mizuki, T., Uchiike, F., Sone, H.: Securely computing XOR with 10 cards. Australas. J. Comb. 36, 279–293 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Nakai, T., Shirouchi, S., Iwamoto, M., Ohta, K.: Four cards are sufficient for a card-based three-input voting protocol utilizing private permutations. In: Shikata, J. (ed.) ICITS 2017. LNCS, vol. 10681, pp. 153–165. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72089-0_9

    Chapter  Google Scholar 

  12. Nakai, T., Tokushige, Y., Misawa, Y., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic protocols for millionaires’ problem utilizing private permutations. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 500–517. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0_30

    Chapter  Google Scholar 

  13. Niemi, V., Renvall, A.: Secure multiparty computations without computers. Theor. Comput. Sci. 191(1–2), 173–183 (1998)

    Article  MathSciNet  Google Scholar 

  14. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for any Boolean function. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 110–121. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17142-5_11

    Chapter  Google Scholar 

  15. Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input majority function with eight cards. In: Dediu, A.-H., Martín-Vide, C., Truthe, B., Vega-Rodríguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 193–204. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45008-2_16

    Chapter  Google Scholar 

  16. Stiglic, A.: Computations with a deck of cards. Theor. Comput. Sci. 259(1–2), 671–678 (2001)

    Article  MathSciNet  Google Scholar 

  17. Ueda, I., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: How to implement a random bisection cut. In: Martín-Vide, C., Mizuki, T., Vega-Rodríguez, M.A. (eds.) TPNC 2016. LNCS, vol. 10071, pp. 58–69. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49001-4_5

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant Numbers 17J01169 and 17K00001. The authors would like to thank Osamu Watanabe for his valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazumasa Shinagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shinagawa, K., Mizuki, T. (2019). The Six-Card Trick: Secure Computation of Three-Input Equality. In: Lee, K. (eds) Information Security and Cryptology – ICISC 2018. ICISC 2018. Lecture Notes in Computer Science(), vol 11396. Springer, Cham. https://doi.org/10.1007/978-3-030-12146-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12146-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12145-7

  • Online ISBN: 978-3-030-12146-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics