Skip to main content

Enhancing the DISSFCM Algorithm for Data Stream Classification

  • Conference paper
  • First Online:
Fuzzy Logic and Applications (WILF 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11291))

Included in the following conference series:

Abstract

Analyzing data streams has become a new challenge to meet the demands of real time analytics. Conventional mining techniques are proving inefficient to cope with challenges associated with data streams, including resources constraints like memory and running time along with single scan of the data. Most existing data stream classification methods require labeled samples that are more difficult and expensive to obtain than unlabeled ones. Semi-supervised learning algorithms can solve this problem by using unlabeled samples together with a few labeled ones to build classification models. Recently we proposed DISSFCM, an algorithm for data stream classification based on incremental semi-supervised fuzzy clustering. To cope with the evolution of data, DISSFCM adapts dynamically the number of clusters by splitting large-scale clusters. While splitting is effective in improving the quality of clusters, a repeated application without counter-balance may induce many small-scale clusters. To solve this problem, in this paper we enhance DISSFCM by introducing a procedure that merges small-scale clusters. Preliminary experimental results on a real-world benchmark dataset show the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Any stream can be turned into a chunked stream by simply waiting for enough data points to arrive.

  2. 2.

    https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+handwritten+digits.

References

  1. Eaton, C., Zikopoulos, P.: Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data, 1st edn. McGraw-Hill Osborne Media, New York (2011)

    Google Scholar 

  2. Casalino, G., Castiello, C., Del Buono, N., Mencar, C.: Intelligent Twitter data analysis based on nonnegative matrix factorizations. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10404, pp. 188–202. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62392-4_14

    Chapter  Google Scholar 

  3. Casalino, G., Castiello, C., Del Buono, N., Mencar, C.: A framework for intelligent Twitter data analysis with nonnegative matrix factorization. Int. J. Web Inf. Syst. 14(3), 334–356 (2018)

    Article  Google Scholar 

  4. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: Proceedings of the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2002, pp. 1–16. ACM, New York (2002)

    Google Scholar 

  5. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: a review. SIGMOD Rec. 34(2), 18–26 (2005)

    Article  Google Scholar 

  6. Gama, J.: Knowledge Discovery from Data Streams, 1st edn. Chapman & Hall/CRC, Boca Raton (2010)

    Book  Google Scholar 

  7. Chandak, M.B.: Role of big-data in classification and novel class detection in data streams. J. Big Data 3(1), 5 (2016)

    Article  Google Scholar 

  8. Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob. Netw. Appl. 19(2), 171–209 (2014)

    Article  Google Scholar 

  9. Ferranti, A., Marcelloni, F., Segatori, A., Antonelli, M., Ducange, P.: A distributed approach to multi-objective evolutionary generation of fuzzy rule-based classifiers from big data. Inf. Sci. 415, 319–340 (2017)

    Article  Google Scholar 

  10. Ducange, P., Pecori, R., Mezzina, P.: A glimpse on big data analytics in the framework of marketing strategies. Soft Comput. 22(1), 325–342 (2018)

    Article  Google Scholar 

  11. Lughofer, E., Pratama, M.: Online active learning in data stream regression using uncertainty sampling based on evolving generalized fuzzy models. IEEE Trans. Fuzzy Syst. 26(1), 292–309 (2018)

    Article  Google Scholar 

  12. Hyde, R., Angelov, P., MacKenzie, A.R.: Fully online clustering of evolving data streams into arbitrarily shaped clusters. Inf. Sci. 382–383, 96–114 (2017)

    Article  Google Scholar 

  13. Lughofer, E.: A dynamic split-and-merge approach for evolving cluster models. Evol. Syst. 3(3), 135–151 (2012)

    Article  Google Scholar 

  14. Olorunnimbe, M.K., Viktor, H.L., Paquet, E.: Dynamic adaptation of online ensembles for drifting data streams. J. Intell. Inf. Syst. 50(2), 291–313 (2018)

    Article  Google Scholar 

  15. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2000, pp. 71–80. ACM (2000)

    Google Scholar 

  16. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2001, pp. 97–106. ACM (2001)

    Google Scholar 

  17. Nguyen, H.-L., Woon, Y.-K., Ng, W.-K.: A survey on data stream clustering and classification. Knowl. Inf. Syst. 45(3), 535–569 (2015)

    Article  Google Scholar 

  18. Mousavi, M., Bakar, A.A., Vakilian, M.: Data stream clustering algorithms: a review. Int. J. Adv. Soft Comput. Appl. 7(3), 13 (2015)

    Google Scholar 

  19. Toshniwal, D.: Clustering techniques for streaming data - a survey. In: 2013 3rd IEEE International Advance Computing Conference, IACC, pp. 951–956, February 2013

    Google Scholar 

  20. Ghesmoune, M., Lebbah, M., Azzag, H.: Micro-batching growing neural gas for clustering data streams using spark streaming. Proc. Comput. Sci. 53, 158–166 (2015). INNS Conference on Big Data 2015 Program, San Francisco, CA, USA, 8–10 August 2015

    Article  Google Scholar 

  21. Zhu, X.: Semi-supervised learning literature survey. Technical report 1530, Computer Sciences. University of Wisconsin-Madison (2005)

    Google Scholar 

  22. Blum, A., Mitchell, T.M.: Combining labeled and unlabeled data with co-training. In: Bartlett, P.L., Mansour, Y. (eds.) COLT, pp. 92–100. ACM (1998)

    Google Scholar 

  23. Zhou, Z.-H., Li, M.: Tri-training: exploiting unlabeled data using three classifiers. IEEE Trans. Knowl. Data Eng. 17(11), 1529–1541 (2005)

    Article  Google Scholar 

  24. Beringer, J., Hüllermeier, E.: Fuzzy clustering of parallel data streams. In: Advances in Fuzzy Clustering and Its Application, pp. 333–352 (2007)

    Google Scholar 

  25. Abdullatif, A., Masulli, F., Rovetta, S.: Clustering of nonstationary data streams: a survey of fuzzy partitional methods. Wiley Interdisc. Rev.: Data Min. Knowl. Discov. 8(4), e1258 (2018)

    Google Scholar 

  26. Mostafavi, S., Amiri, A.: Extending fuzzy C-means to clustering data streams. In: 20th Iranian Conference on Electrical Engineering, ICEE 2012, pp. 726–729, May 2012

    Google Scholar 

  27. Upadhyay, D., Jain, S., Jain, A.: A fuzzy clustering algorithm for high dimensional streaming data. J. Inf. Eng. Appl. 3(10), 1–9 (2013)

    Google Scholar 

  28. Geweniger, T., Fischer, L., Kaden, M., Lange, M., Villmann, T.: Clustering by fuzzy neural gas and evaluation of fuzzy clusters. Comput. Intell. Neurosci. 2013, 9 (2013)

    Article  Google Scholar 

  29. Castellano, G., Fanelli, A.M.: Classification of data streams by incremental semi-supervised fuzzy clustering. In: Petrosino, A., Loia, V., Pedrycz, W. (eds.) WILF 2016. LNCS, vol. 10147, pp. 185–194. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52962-2_16

    Chapter  Google Scholar 

  30. Pedrycz, W.: Algorithms of fuzzy clustering with partial supervision. Pattern Recogn. Lett. 3(1), 13–20 (1985)

    Article  Google Scholar 

  31. Casalino, C., Castellano, G., Mencar, C.: Incremental adaptive semi-supervised fuzzy clustering for data stream classification. In: Proceedings of the 2018 IEEE Conference on Evolving and Adaptive Intelligent Systems, EAIS 2018, Rhodes, Greece, 25–27 May 2018, pp. 1–7 (2018)

    Google Scholar 

  32. Li, P., Wu, X., Hu, X., Wang, H.: Learning concept-drifting data streams with random ensemble decision trees. Neurocomputing 166(C), 68–83 (2015)

    Article  Google Scholar 

  33. Xuefei, L., Huimin, F., Hongbo, S.: Incremental learning fuzzy measures with Choquet integrals in fusion system. J. Chem. Pharm. Res. 6, 102–112 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Castellano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Casalino, G., Castellano, G., Fanelli, A.M., Mencar, C. (2019). Enhancing the DISSFCM Algorithm for Data Stream Classification. In: Fullér, R., Giove, S., Masulli, F. (eds) Fuzzy Logic and Applications. WILF 2018. Lecture Notes in Computer Science(), vol 11291. Springer, Cham. https://doi.org/10.1007/978-3-030-12544-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12544-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12543-1

  • Online ISBN: 978-3-030-12544-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics