Abstract
In many practical multi-objective optimization problems, evaluation of objectives and constraints are computationally time-consuming, because they require expensive simulation of complicated models. Researchers often use a comparatively less time-consuming surrogate or metamodel (model of models) to drive the optimization task. Effectiveness of the metamodeling method relies not only on how it manages the search process (to find infill sampling) but also how it deals with associated error uncertainty between metamodels and the true models during an optimization run. In this paper, we propose a metamodel-based multi-objective evolutionary algorithm that adaptively maintains regions of trust in variable space to make a balance between error uncertainty and progress. In contrast to other trust-region methods for single-objective optimization, our method aims to solve multi-objective expensive problems where we incorporate multiple trust regions, corresponding to multiple non-dominated solutions. These regions can grow or shrink in size according to the deviation between metamodel prediction and high-fidelity computed values. We introduce two performance indicators based on hypervolume and achievement scalarization function (ASF) to control the size of the trust regions. The results suggest that our proposed trust-region based methods can effectively solve test and real-world problems using a limited budget of solution evaluations with increased accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alexandrov, N.M., Dennis, J.E., Lewis, R.M., Torczon, V.: A trust-region framework for managing the use of approximation models in optimization. Struct. Optim. 15(1), 16–23 (1998)
Bhattacharjee, K.S., Singh, H.K., Ray, T.: Multi-objective optimization with multiple spatially distributed surrogates. J. Mech. Des. 138(9), 091401-091401-10 (2016)
Bhattacharjee, K.S., Singh, H.K., Ray, T., Branke, J.: Multiple surrogate assisted multiobjective optimization using improved pre-selection. In: IEEE CEC (2016)
Chugh, T., Jin, Y., Miettinen, K., Hakanen, J., Sindhya, K.: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization. IEEE Trans. Evol. Comput. 22(1), 129–142 (2018)
Deb, K., Hussein, R., Roy, P.C., Toscano, G.: A taxonomy for metamodeling frameworks for evolutionary multi-objective optimization. IEEE Trans. Evol. Comput. (in Press)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186, 311–338 (2000)
Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)
Deb, K., Hussein, R., Roy, P., Toscano, G.: Classifying metamodeling methods for evolutionary multi-objective optimization: first results. In: Trautmann, H., et al. (eds.) EMO 2017. LNCS, vol. 10173, pp. 160–175. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54157-0_12
Emmerich, M.T.M., Deutz, A.H., Klinkenberg, J.W.: Hypervolume-based expected improvement: monotonicity properties and exact computation. In: 2011 IEEE Congress of Evolutionary Computation, CEC, pp. 2147–2154 (2011)
Emmerich, M.T.M., Giannakoglou, K.C., Naujoks, B.: Single- and multiobjective evolutionary optimization assisted by Gaussian random field metamodels. IEEE Trans. Evol. Comput. 10(4), 421–439 (2006)
Fliege, J., Vaz, A.I.F.: A method for constrained multiobjective optimization based on SQP techniques. SIAM J. Optim. 26(4), 2091–2119 (2016)
Hussein, R., Deb, K.: A generative kriging surrogate model for constrained and unconstrained multi-objective optimization. In: GECCO 2016. ACM Press (2016)
Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm Evol. Comput. 1(2), 61–70 (2011)
Knowles, J.: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10, 50–66 (2006)
Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)
Pedrielli, G., Ng, S.: G-STAR: a new kriging-based trust region method for global optimization. IEEE Press, United States, January 2017
Ponweiser, W., Wagner, T., Biermann, D., Vincze, M.: Multiobjective optimization on a limited budget of evaluations using model-assisted \(\cal{S}\)-metric selection. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 784–794. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_78
Roy, P., Deb, K.: High dimensional model representation for solving expensive multi-objective optimization problems. In: IEEE CEC, pp. 2490–2497 (2016)
Roy, P.C., Deb, K., Islam, M.M.: An efficient nondominated sorting algorithm for large number of fronts. IEEE Trans. Cyber. 1–11 (2018)
Roy, P., Hussein, R., Deb, K.: Metamodeling for multimodal selection functions in evolutionary multi-objective optimization. In: GECCO 2017. ACM Press (2017)
Roy, P.C., Blank, J., Hussein, R., Deb, K.: Trust-region based algorithms with low-budget for multi-objective optimization. In: GECCO, pp. 195–196. ACM (2018)
Roy, P.C., Islam, M.M., Deb, K.: Best order sort: a new algorithm to non-dominated sorting for evolutionary multi-objective optimization. In: GECCO (2016)
Ryu, J.H., Kim, S.: A derivative-free trust-region method for biobjective optimization. SIAM J. Optim. 24(1), 334–362 (2014)
Viana, F.A.C., Haftka, R.T., Watson, L.T.: Efficient global optimization algorithm assisted by multiple surrogate techniques. J. Global Optim. 56, 669–689 (2013)
Wierzbicki, A.P.: The use of reference objectives in multiobjective optimization. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making Theory and Application. LNE, vol. 177, pp. 468–486. Springer, Heidelberg (1980). https://doi.org/10.1007/978-3-642-48782-8_32
Zhang, Q., Liu, W., Tsang, E., Virginas, B.: Expensive multiobjective optimization by MOEA/D With Gaussian process model. IEEE Trans. Evol. Comput. 14(3), 456–474 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Roy, P.C., Hussein, R., Blank, J., Deb, K. (2019). Trust-Region Based Multi-objective Optimization for Low Budget Scenarios. In: Deb, K., et al. Evolutionary Multi-Criterion Optimization. EMO 2019. Lecture Notes in Computer Science(), vol 11411. Springer, Cham. https://doi.org/10.1007/978-3-030-12598-1_30
Download citation
DOI: https://doi.org/10.1007/978-3-030-12598-1_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-12597-4
Online ISBN: 978-3-030-12598-1
eBook Packages: Computer ScienceComputer Science (R0)