Skip to main content

Designing Solar Chimney Power Plant Using Meta-modeling, Multi-objective Optimization, and Innovization

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2019)

Abstract

Generally speaking, the couples of simulator-optimizer are very common combination in optimizing the systems in science and engineering fields; but when the simulation process is an expensive one, then each fitness evaluation of the optimizer can take several hours even days, which makes the mentioned process impractical to run in given time budget. In this paper, we replace the solar chimney power plant (SCPP) simulator with a bi-objective meta-model which is created by Genetic Programming (GP) and we compared the created model with neural network and regression models to be sure it is accurate enough. Then, we have utilized a genetic algorithm based multi-objective algorithm to solve the created bi-objective optimization problem resulted from the meta-modeling phase. After finding optimal Pareto-front (PF), we use a GP-based innovization technique to discover engineering design knowledge and rules for the designed optimal power plant. The created models have been validated with results of the 4 corresponding simulator, a promising error rate (\({<}\)4%) has been obtained. This work can be evaluated as a successful energy application of GP-based meta-modeling, evolutionary multi-objective optimization, and GP-based innovization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+Fluent.

  2. 2.

    https://www.comsol.com/comsol-multiphysics.

  3. 3.

    https://www.nutonian.com/.

References

  1. Zhou, X., Wang, F., Ochieng, R.M.: A review of solar chimney power technology. Renew. Sustain. Energy Rev. 14, 2315–2338 (2010)

    Article  Google Scholar 

  2. Haaf, W., Friedrich, K., Mayr, G., Schlaich, J.: Solar chimneys, part i: principle and construction of the pilot plant in Manzanares. Int. J. Sustain. Energy 2(1), 3–20 (1983)

    Google Scholar 

  3. Haaf, W.: Solar chimneys. Part II: preliminary test results from the Manzanares pilot plant. Int. J. Sustain. Energy 2(2), 141–161 (1984)

    Article  Google Scholar 

  4. Krisst, R.J.K.: Energy transfer system. Alternat Sour. Energy 63, 8–11 (1983)

    Google Scholar 

  5. Kulunk, H.: A prototype solar convection chimney operated under Izmit conditions. In: Veiroglu, T.N. (ed.) Proceedings of the Seventh MICAS, Turkey, vol. 162 (1985)

    Google Scholar 

  6. Pasumarthi, N., Sherif, S.A.: Experimental and theoretical performance of a demonstration solar chimney model part I: mathematical model development. Int. J. Energy Res. 22, 277–288 (1998a)

    Article  Google Scholar 

  7. Pasumarthi, N., Sherif, S.A.: Experimental and theoretical performance of a demonstration solar chimney model part II: experimental and theoretical results and economic analysis. Int. J. Energy Res. 22, 443–461 (1998b)

    Article  Google Scholar 

  8. Zhou, X.P., Yang, J.K., Xiao, B., Hou, G.X.: Experimental study of temperature field in a solar chimney power setup. Appl. Therm. Eng. 27, 2044–2050 (2007)

    Article  Google Scholar 

  9. Bernardes, M.A.S., Dos, S., Voß, A., Weinrebe, G.: Thermal and technical analyses of solar chimneys. Solar Energy 75, 511–524 (2003)

    Article  Google Scholar 

  10. Zhou, X., Yang, J., Xiao, B., Hou, G., Xing, F.: Analysis of chimney height for solar chimney power plant. Appl. Thermal Eng. 29, 178–185 (2009)

    Article  Google Scholar 

  11. Guo, P.H., Li, G.Y., Wang, Y.: Numerical simulation of solar chimney power plant with radiation. Renew. Energy 62, 24–30 (2004)

    Article  Google Scholar 

  12. Sangi, R., Amidpour, M., Hosseinizadeh, B.: Modeling and numerical simulation of solar chimney power plants. Solar Energy 85, 829–838 (2011)

    Article  Google Scholar 

  13. Patel, S.K., Prasad, D., Ahmed, M.R.: Computational studies on the effect of geometric parameters on the performance of a solar chimney power plant. Energy Convers. Manag. 77, 424–431 (2014)

    Article  Google Scholar 

  14. Nasirivatan, S., Kasaeian, A., Ghalamchi, M., Ghalamchi, M.: Performance optimization of solar chimney power plant using electric/corona wind. J. Electrostatic 78, 22–30 (2015)

    Article  Google Scholar 

  15. Sciuto, G.L., Cammarata, G., Capizzi, G., Coco, S., Petrone, G.: Design optimization of solar chimney power plant by finite elements based numerical model and cascade neural networks. In: International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM) (2016)

    Google Scholar 

  16. Deb, K., Srinivasan, A.: Innovization: discovery of innovative design principles through multi objective evolutionary optimization. In: Knowles, J., Corne, D., Deb, K., Chair, D.R. (eds.) Multi Objective Problem Solving from Nature. NCS, pp. 243–262. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-72964-8_12

    Chapter  Google Scholar 

  17. KarimiPour-Fard, P., Beheshti, H., Baniasadi, E.: Energy and exergy analyses of a solar chimney power plant with thermal energy storage. Int. J. Exergy 20(2) (2016)

    Google Scholar 

  18. Karimipour-Fard, P., Beheshti, H.: Performance enhancement and environmental impact analysis of a solar chimney power plant: twenty-four-hour simulation in climate condition of Isfahan, Iran. IJE Trans. B: Appl. 30(8), 1260–1269 (2017)

    Google Scholar 

  19. Koza, J.R.: Evolution of subsumption using genetic programming. In: Conference Preceding (NM) (1991)

    Google Scholar 

  20. Kumar, M., Husian, M., Upreti, N., Gupta, D.: Genetic algorithm: review and application. Int. J. Inf. Technol. Knowl. Manag. 2(2), 451–454 (2010)

    Google Scholar 

  21. Chipperfield, A.J., Fleming, P.J., Pohlheim, H., Fonseca, C.M.: The MATLAB genetic algorithm toolbox. In: ICSE, Tenth International Conference on Systems Engineering, pp. 200–207 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fateme Azimlu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azimlu, F., Rahnamayan, S., Makrehchi, M., Karimipour-Fard, P. (2019). Designing Solar Chimney Power Plant Using Meta-modeling, Multi-objective Optimization, and Innovization. In: Deb, K., et al. Evolutionary Multi-Criterion Optimization. EMO 2019. Lecture Notes in Computer Science(), vol 11411. Springer, Cham. https://doi.org/10.1007/978-3-030-12598-1_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12598-1_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12597-4

  • Online ISBN: 978-3-030-12598-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics