Skip to main content

Toward a New Family of Hybrid Evolutionary Algorithms

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11411))

Included in the following conference series:

  • 2202 Accesses

Abstract

Multi-objective optimization problems (MOPs) arise in a natural way in diverse knowledge areas. Multi-objective evolutionary algorithms (MOEAs) have been applied successfully to solve this type of optimization problems over the last two decades. However, until now MOEAs need quite a few resources in order to obtain acceptable Pareto set/front approximations. Even more, in certain cases when the search space is highly constrained, MOEAs may have troubles when approximating the solution set. When dealing with constrained MOPs (CMOPs), MOEAs usually apply penalization methods. One possibility to overcome these situations is the hybridization of MOEAs with local search operators. If the local search operator is based on classical mathematical programming, gradient information is used, leading to a relatively high computational cost. In this work, we give an overview of our recently proposed constraint handling methods and their corresponding hybrid algorithms. These methods have specific mechanisms that deal with the constraints in a wiser way without increasing their cost. Both methods do not explicitly compute the gradients but extract this information in the best manner out of the current population of the MOEAs. We conjecture that these techniques will allow for the fast and reliable treatment of CMOPs in the near future. Numerical results indicate that these ideas already yield competitive results in many cases.

The authors acknowledge support for CONACyT project No. 285599 and IPN project SIP20181450.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Time series of domestic price indexes were obtained from the National Institute of Statistics and Geography of Mexico (INEGI, by its Spanish acronym).

References

  1. Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. J. Econometrics 31(3), 307–327 (1986)

    Article  MathSciNet  Google Scholar 

  2. Bosman, P.A.: On gradients and hybrid evolutionary algorithms for real-valued multiobjective optimization. IEEE Trans. Evol. Comput. 16(1), 51–69 (2012)

    Article  Google Scholar 

  3. Brown, M., Smith, R.E.: Effective use of directional information in multi-objective evolutionary computation. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 778–789. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45105-6_92

    Chapter  Google Scholar 

  4. Coello, C.A.C., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems, vol. 242. Springer, Heidelberg (2002). https://doi.org/10.1007/978-1-4757-5184-0

    Book  MATH  Google Scholar 

  5. Cuate, O., et al.: A new hybrid metaheuristic for equality constrained bi-objective optimization problems. In: EMO 2019 (2019)

    Google Scholar 

  6. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)

    Google Scholar 

  7. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  9. Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51(3), 479–494 (2000)

    Article  MathSciNet  Google Scholar 

  10. Guerrero, S., \(\text{Hernandez-del-Valle}\), G., Juárez-Torres, M.: A functional approach to test trending volatility: evidence of trending volatility in the price of \(\text{ Mexican }\) and international agricultural products. Agricultural Economics

    Google Scholar 

  11. Harada, K., Sakuma, J., Kobayashi, S.: Local search for multiobjective function optimization: pareto descent method. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 659–666. ACM (2006)

    Google Scholar 

  12. Kukkonen, S., Lampinen, J.: GDE3: the third evolution step of generalized differential evolution. In: CEC 2005, vol. 1, pp. 443–450. IEEE (2005)

    Google Scholar 

  13. Lara, A., Sanchez, G., Coello, C.A.C., Schütze, O.: HCS: a new local search strategy for memetic multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 14(1), 112–132 (2010)

    Article  Google Scholar 

  14. Lara, A., Uribe, L., Alvarado, S., Sosa, V.A., Wang, H., Schütze, O.: On the choice of neighborhood sampling to build effective search operators for constrained MOPs. Memet. Comput. 1–19 (2018)

    Google Scholar 

  15. Li, J., Tan, Y.: Orienting mutation based fireworks algorithm. In: CEC 2015, pp. 1265–1271. IEEE (2015)

    Google Scholar 

  16. López, A.L., Coello, C.A.C., Schütze, O.: A painless gradient-assisted multi-objective memetic mechanism for solving continuous bi-objective optimization problems. In: CEC 2010, pp. 1–8. IEEE (2010)

    Google Scholar 

  17. Martín, A., Schütze, O.: Pareto tracer: a predictor-corrector method for multi-objective optimization problems. Eng. Optim. 50(3), 516–536 (2018)

    Article  MathSciNet  Google Scholar 

  18. Saha, A., Ray, T.: Equality constrained multi-objective optimization, pp. 1–7, June 2012

    Google Scholar 

  19. Schütze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 16(4), 504–522 (2012)

    Article  Google Scholar 

  20. Schütze, O., Martín, A., Lara, A., Alvarado, S., Salinas, E., Coello Coello, C.A.: The directed search method for multi-objective memetic algorithms. Comput. Optim. Appl. 1–28 (2015)

    Google Scholar 

  21. Schütze, O., Alvarado, S., Segura, C., Landa, R.: Gradient subspace approximation: a direct search method for memetic computing. Soft Comput. 21(21), 6331–6350 (2017)

    Article  Google Scholar 

  22. Shalamov, V., Filchenkov, A., Chivilikhin, D.: Small-moves based mutation for pick-up and delivery problem. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 1027–1030. ACM (2016)

    Google Scholar 

  23. Shukla, P.K.: On gradient based local search methods in unconstrained evolutionary multi-objective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 96–110. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_11

    Chapter  Google Scholar 

  24. Sun, J.Q., Xiong, F.R., Schütze, O., Hernández, C.: Cell Mapping Methods—Algorithmic Approaches and Applications. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-0457-6

    Book  MATH  Google Scholar 

  25. Takahama, T., Sakai, S.: Constrained optimization by the \(\varepsilon \) constrained differential evolution with an archive and gradient-based mutation. In: CEC 2010, pp. 1–9. IEEE (2010)

    Google Scholar 

  26. Uribe, L., Lara, A., Schütze, O.: On the efficient computation and use of multi-objective descent directions within MOEAs. Technical report (2018)

    Google Scholar 

  27. Uribe, L., Perea, B., Hernández-del Valle, G., Schütze, O.: A hybrid metaheuristic for the efficient solution of garch with trend models. Comput. Econ. 52(1), 145–166 (2018)

    Article  Google Scholar 

  28. Zapotecas-Martínez, S., Coello Coello, C.A.: A hybridization of MOEA/D with the nonlinear simplex search algorithm. In: 2013 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making, pp. 48–55. IEEE (2013)

    Google Scholar 

  29. Zapotecas-Martínez, S., Coello Coello, C.A.: MONSS: a multi-objective nonlinear simplex search approach. Eng. Optim. 48(1), 16–38 (2016)

    Article  MathSciNet  Google Scholar 

  30. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lourdes Uribe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uribe, L., Schütze, O., Lara, A. (2019). Toward a New Family of Hybrid Evolutionary Algorithms. In: Deb, K., et al. Evolutionary Multi-Criterion Optimization. EMO 2019. Lecture Notes in Computer Science(), vol 11411. Springer, Cham. https://doi.org/10.1007/978-3-030-12598-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12598-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12597-4

  • Online ISBN: 978-3-030-12598-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics