Abstract
In a recent paper Faonio, Nielsen and Venturi (ICALP 2015) gave new constructions of leakage-resilient signature schemes. The signature schemes proposed remain unforgeable against an adversary leaking arbitrary information on the entire state of the signer, including the random coins of the signing algorithm. The main feature of their signature schemes is that they offer a graceful degradation of security in situations where standard existential unforgeability is impossible. The notion, put forward by Nielsen, Venturi, and Zottarel (PKC 2014), defines a slack parameter \(\gamma \) which, roughly speaking, describes how gracefully the security degrades. Unfortunately, the standard-model signature scheme of Faonio, Nielsen and Venturi has a slack parameter that depends on the number of signatures queried by the adversary.
In this paper we show two new constructions in the standard model where the above limitation is avoided. Specifically, the first scheme achieves slack parameter \(O(1/\lambda )\) where \(\lambda \) is the security parameter and it is based on standard number theoretic assumptions, the second scheme achieves optimal slack parameter (i.e. \(\gamma =1\)) and it is based on knowledge of the exponent assumptions. Our constructions are efficient and have leakage rate \(1-o(1)\), most notably our second construction has signature size of only 8 group elements which makes it the leakage-resilient signature scheme with the shortest signature size known to the best of our knowledge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In [30], the authors show that the notion, even for small value of the slack parameter, allows for interesting applications such as leakage-resilient identification schemes.
- 2.
Intuitively, any trapdoor for equivocation would break the knowledge of the exponent assumption.
- 3.
As the forth scheme is a variation of FNV15\(_1\) and it achieves worse efficiency parameters.
- 4.
Also notice that we quantify the extractor after the sampler, so to avoid pathological situation where the adversary \(\mathsf {A}\) simply forwards the output of the sampler \(\mathcal {S} \).
- 5.
The adversary gets to see the public key \(\mathsf {pk}\) for uniformly sampled keys
.
- 6.
We reverse the order of the quantifiers in the usual definition of knowledge soundness. Namely, for each adversary \(\mathsf {A}\) there exists an extractor \(\mathsf {Ext}\).
- 7.
Namely, the set of assignment for the randomness \(z_i\) for which the execution of \(\mathsf {P}\) with randomness \(z_i\) and the appropriate tuple instance and witness does compute exactly the proof \(\pi _i\).
References
Abe, M., Fehr, S.: Perfect NIZK with adaptive soundness. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 118–136. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_7
Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key encryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_6
Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 36–54. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_3
Ateniese, G., Faonio, A., Kamara, S.: Leakage-resilient identification schemes from zero-knowledge proofs of storage. In: Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 311–328. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27239-9_19
Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_17
Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable one-way functions. In: 46th ACM STOC, pp. 505–514 (2014)
Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_7
Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in the bucket: public-key cryptography resilient to continual memory leakage. In: 51st FOCS, pp. 501–510 (2010)
Damgård, I.: Towards practical public key systems secure against chosen ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_36
Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against continuous memory attacks. In: 51st FOCS, pp. 511–520 (2010)
Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_8
Faonio, A.: Efficient fully-leakage resilient one-more signature schemes. Cryptology ePrint Archive, Report 2018/1140 (2018). https://eprint.iacr.org/2018/1140
Faonio, A., Nielsen, J.B.: Fully leakage-resilient codes. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 333–358. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-8_14
Faonio, A., Nielsen, J.B., Venturi, D.: Mind your coins: fully leakage-resilient signatures with graceful degradation. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 456–468. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47672-7_37
Faonio, A., Nielsen, J.B., Venturi, D.: Fully leakage-resilient signatures revisited: graceful degradation, noisy leakage, and construction in the bounded-retrieval model. Theoret. Comput. Sci. 660, 23–56 (2017)
Fiore, D., Nitulescu, A.: On the (in)security of SNARKs in the presence of oracles. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 108–138. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4_5
Fujisaki, E.: All-but-many encryption. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 426–447. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_23
Fujisaki, E.: All-but-many encryption. J. Cryptol. 31(1), 226–275 (2018)
Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1_21
Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_37
Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_19
Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24
Hofheinz, D.: All-but-many lossy trapdoor functions. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 209–227. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_14
Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 1–20. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_1
Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 101–128. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_4
Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9
Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25
Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to continual leakage on memory and computation. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 89–106. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_7
Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_2
Nielsen, J.B., Venturi, D., Zottarel, A.: Leakage-resilient signatures with graceful degradation. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 362–379. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_21
Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252 (2013)
Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9
Acknowledgements
Research leading to these results has been supported by the Spanish Ministry of Economy under the projects Dedetis (ref. TIN2015-70713-R) and Datamantium (ref. RTC-2016-4930-7), and by the Madrid Regional Government under project N-Greens (ref. S2013/ICE-2731).
I would like to thank Dario Fiore for a conversation we had on his paper [16]. Also, I would like to thank Dennis Hofheinz which suggested to me the paper of Fujisaki on ABM Encryption.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Faonio, A. (2019). Efficient Fully-Leakage Resilient One-More Signature Schemes. In: Matsui, M. (eds) Topics in Cryptology – CT-RSA 2019. CT-RSA 2019. Lecture Notes in Computer Science(), vol 11405. Springer, Cham. https://doi.org/10.1007/978-3-030-12612-4_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-12612-4_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-12611-7
Online ISBN: 978-3-030-12612-4
eBook Packages: Computer ScienceComputer Science (R0)