Abstract
A significant proportion of the population has become used to sharing private information on the internet with their friends. This information can leak throughout their social network and the extent that personal information propagates can depend on the privacy policy of large corporations. In an era of artificial intelligence, data mining, and cloud computing, is it necessary to share personal information with unidentified people? Our research shows that deep learning is possible using relatively low capacity computing. When applied, this demonstrates promising results in spatio-temporal positioning of subjects, in prediction of movement, and assessment of contextual risk. A private surveillance system is particularly suitable in the care of those who may be considered vulnerable.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that Google Timeline is only used for data gathering in this initial feasibility study. The full solution uses GPS data stored only locally on the mobile device and processed on the home hub.
References
Williams, S., Müller, B.: Agents and dementia—smart risk assessment. In: Criado Pacheco, N., Carrascosa, C., Osman, N., Julián Inglada, V. (eds.) EUMAS/AT-2016. LNCS (LNAI), vol. 10207, pp. 277–284. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59294-7_22
Williams, S., Ware, J.M.: Is the use of ‘mobile computer technology’ appropriate for locating people with dementia? In: 2015 Proceedings of GIS Research UK (GISRUK), pp. 659–664. Figshare, Leeds (2015). https://doi.org/10.6084/m9.figshare.1491375
Read, S., Toye, C., Wynaden, D.: Experiences and expectations of living with dementia: a qualitative study. Collegian 24(5), 427–432 (2017). https://doi.org/10.1016/j.colegn.2016.09.003
Silverstein, N.F.: Dementia and Wandering Behavior: Concern for the Lost Elder. Springer, New York (2006). ISBN 0-8261-0272-7
McShane, R., et al.: Getting lost in dementia: a longitudinal study of a behavioral symptom. Int. Psychogeriatr. 10(03), 253–260 (1998). http://www.ncbi.nlm.nih.gov/pubmed/9785146
Ali, N., et al.: Risk assessment of wandering behavior in mild dementia. Int. J. Geriatr. Psychiatry 31, 367–374 (2016). https://doi.org/10.1002/gps.4336
Martyr, A., et al.: Living well with dementia: a systematic review. Alzheimer’s Dement. J. Alzheimer’s Assoc. 13(7), 1567–1568 (2017). https://doi.org/10.1016/j.jalz.2017.07.725
Cipriani, G., Lucetti, C., Nuti, A., Danti, S.: Wandering and dementia. Psychogeriatrics 14, 135–142 (2014). https://doi.org/10.1111/psyg.12044
Riikonen, M., Mäkelä, K., Perälä, S.: Safety and monitoring technologies for the homes of people with dementia. Gerontechnology 9(1), 32–45 (2010). https://doi.org/10.4017/gt.2010.09.01.003.00
Mathews, L.: Data From 540,000 GPS Vehicle Trackers Leaked Online forbes.com (2017). https://www.forbes.com/sites/leemathews/2017/09/22/data-from-540000-vehicle-tracking-devices-leaked-online/#40b9c009274b. Accessed 19 Sept 2018
Trackmageddon website: Multiple vulnerabilities in the online services of (GPS) location tracking devices (2018). https://0x0.li/trackmageddon/. 18 Aug 2018
World Health Organisation: Ensuring a human rights-based approach for people living with dementia (2015). The need for a human-rights based approach: http://www.who.int/mental_health/neurology/dementia/dementia_thematicbrief_human_rights.pdf. Accessed Mar 2018
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539
Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Networks 61, 85–117 (2014). https://doi.org/10.1016/j.neunet.2014.09.003
Brownlee, J.: How to Implement the Backpropagation Algorithm From Scratch in Python (2016). Machine Learning Mastery: https://machinelearningmastery.com/implement-backpropagation-algorithm-scratch-python/. Accessed Mar 2018
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. ACM SIGKDD Explor. Newsl. 12(2), 74–82 (2010). https://doi.org/10.1145/1964897.1964918
Ramamurthy, S.R., Roy, N.: Recent trends in machine learning for human activity recognition—a survey. Data Min. Knowl. Discov. 8, 1–19 (2018). https://doi.org/10.1002/widm.1254
Arifoglu, D., Bouchachia, A.: Activity recognition and abnormal behaviour detection with recurrent neural networks. In: 14th International Conference on Mobile Systems and Pervasive Computing (MobiSPC 2017) (2017). Procedia Comput. Sci. 110, 86–93. https://doi.org/10.1016/j.procs.2017.06.121
Batista, E., Borras, F., Casino, F., Solanas, A.: A study on the detection of wandering patterns in human trajectories. In: 6th International Conference on Information, Intelligence, Systems and Applications (IISA), pp. 1–6. IEEE, Corfu (2015)
Maneewongvatana, S., Mount, D.M.: Analysis of approximate nearest neighbor searching with clustered point sets. CoRR arXiv:cs/9901013v1 (1999)
SciPy.Org: Interpolation (scipy.interpolate). https://docs.scipy.org/doc/scipy/reference/interpolate.html. Accessed 17 Mar 2018
Google: Encoded Polyline Algorithm Format. Google Maps Api: https://developers.google.com/maps/documentation/utilities/polylinealgorithm?csw=1. Accessed 17 Mar 2018
Zheng, Y., et al.: Geolife GPS trajectories 1.1. In: Geolife GPS Trajectory Dataset - User Guide. Microsoft Research (2011). https://www.microsoft.com/en-us/research/publication/Geolife-gps-trajectory-dataset-user-guide. Accessed 18 Sept 2018
González, M.C., Hidalgo, C.A., Barabási, A.: Understanding individual human mobility patterns. Nature 453, 779–782 (2008). https://doi.org/10.1038/nature06958
Google Maps Platform: Snap to Roads. Roads API: https://developers.google.com/maps/documentation/roads/snap. Accessed 18 Sept 2018
Fabrice Marchal: TrackMatching API. TrackMatching Website: https://mapmatching.3scale.net/mmswag. Accessed 18 Sept 2018
Google Directions API: Google Directions API. Google Maps: https://developers.google.com/maps/documentation/directions/start. Accessed 18 Sept 2018
Lambertus: YOURS Routing_API. Yet another OpenStreetMap Route Service: https://wiki.openstreetmap.org/wiki/YOURS#Routing_API. Accessed 18 Sept 2018
Laure, P.-D., Yammine, P., Bastuji, H., Croisilef, B.: Sleep and Alzheimer’s disease. Sleep Med. Rev. 19, 29–38 (2015)
Hope, T., et al.: Predictors of institutionalization for people with dementia living at home with a carer. Int. J. Geriatr. Psychiatry 13(10), 682–690 (1998)
McCurry, S., Logsdon, R., Teri, L., Vitiello, M.: Sleep disturbances in caregivers of persons with dementia: contributing factors and treatment implications. Sleep Med. Rev. 11(2), 143–153 (2007)
Brodaty, H.D.: Family caregivers of people with dementia. Dialogues Clin. Neurosci. 11(2), 217–228 (2009). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3181916/. Accessed 17 Apr 2018
Keill, A.K., et al.: Validity of wearable fitness trackers on sleep measure. Med. Sci. Sports Exerc. 48(5S), 10 (2016)
scikit-learn developers: sklearn.cluster.AgglomerativeClustering. http://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html. Accessed 18 Sept 2018
sklearn.cluster developers: sklearn.cluster.KMeans. scikit-learn: http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html. Accessed 18 Sept 2018
Dark Sky Website: Dark Sky Weather API. https://darksky.net/dev. Accessed 18 Sept 2018
Gibson, G., et al.: The everyday use of assistive technology by people with dementia and their family carers: a qualitative study. BMC Geriatr. 15, 89 (2015). https://doi.org/10.1186/s12877-015-0091-3
Acknowledgements
Knowledge Economy Skills Scholarships (KESS) is a pan-Wales higher level skills initiative led by Bangor University on behalf of the HE sectors in Wales. It is part funded by the Welsh Government’s European Social Fund (ESF) convergence programme for West Wales and the Valleys and is supported by the industrial partner SymlConnect Limited.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Williams, S., Ware, J.M., Müller, B. (2019). Ethical Surveillance: Applying Deep Learning and Contextual Awareness for the Benefit of Persons Living with Dementia. In: Koch, F., et al. Artificial Intelligence in Health. AIH 2018. Lecture Notes in Computer Science(), vol 11326. Springer, Cham. https://doi.org/10.1007/978-3-030-12738-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-12738-1_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-12737-4
Online ISBN: 978-3-030-12738-1
eBook Packages: Computer ScienceComputer Science (R0)