Skip to main content

Analysis of Topic Propagation in Therapy Sessions Using Partially Labeled Latent Dirichlet Allocation

  • Conference paper
  • First Online:
Artificial Intelligence in Health (AIH 2018)

Abstract

The full comprehension of how topics change within psychotherapeutic conversation is key for assessment and therapeutic strategies to adopt by the counselor to the patients. That might enable artificial intelligence (AI) approaches to recommend the most suitable strategy for a new patient. Basically, understanding the topics dynamics of previous cases allows choosing the best therapy to perform for new patients depending on their current conversations.

In this paper we leverage Partially Labeled Dirichlet Allocation with the goal to detect and track topics in real-life psychotherapeutic conversations. On the one hand, the detection of topics allows us identifying the semantic themes of the current therapeutic conversation and predicting topics ad-hoc for each talk-turn between the patient and the counselor. On the other hand, the tracking of topics is key to understand and explore the dynamics of the conversation giving insights and tips on logic and strategy to adopt.

We point out that the entire conversation is structured and modeled according to a sequence of ongoing topics that might propagate through each talk-turn. We present a new method that combines topic modeling and transitions matrices that gives important information to counselors for their therapeutic strategies.

Authors are listed in alphabetic order since their contributions have been equally distributed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Image taken from Wikipedia https://en.wikipedia.org/wiki/Cognitive_behavioral_therapy.

  2. 2.

    http://www.discursis.com/.

  3. 3.

    http://ckip.iis.sinica.edu.tw/taxonomy.

  4. 4.

    http://www.apa.org.

  5. 5.

    For example, the word Family could correspond to a top level topic, while Family violence and Child abuse would be associated to the second and third levels respectively. Up to 575 subjects have been used in the three levels in total.

  6. 6.

    https://dsm.psychiatryonline.org.

  7. 7.

    https://en.wikipedia.org/wiki/Category:Main_topic_classifications.

  8. 8.

    http://www.nltk.org/.

  9. 9.

    https://nlp.stanford.edu/software/tmt/tmt-0.4/.

  10. 10.

    http://aksw.org/Projects/Palmetto.html.

References

  1. Allahyari, M., Kochut, K.: Automatic topic labeling using ontology-based topic models. In: 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), pp. 259–264, December 2015

    Google Scholar 

  2. Angus, D., Smith, A.E., Wiles, J.: Human communication as coupled time series: quantifying multi-participant recurrence. IEEE Trans. Audio Speech Lang. Process. 20(6), 1795–1807 (2012)

    Article  Google Scholar 

  3. Angus, D., Watson, B., Smith, A., Gallois, C., Wiles, J.: Visualising conversation structure across time: insights into effective doctor-patient consultations. PloS ONE 7(6), e38014 (2012)

    Article  Google Scholar 

  4. Asuncion, A., Welling, M., Smyth, P., Teh, Y.W.: On smoothing and inference for topic models. In: UAI 2009, pp. 27–34. AUAI Press, Arlington (2009)

    Google Scholar 

  5. Atkins, D.C., Steyvers, M., Imel, Z.E., Smyth, P.: Scaling up the evaluation of psychotherapy: evaluating motivational interviewing fidelity via statistical text classification. Implementation Sci.: IS 9, 49 (2014)

    Article  Google Scholar 

  6. Bangalore, S., Di Fabbrizio, G., Stent, A.: Learning the structure of task-driven human-human dialogs. IEEE Trans. Audio Speech Lang. Process. 16(7), 1249–1259 (2008)

    Article  Google Scholar 

  7. Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: ICML 2006, pp. 113–120. ACM, New York (2006)

    Google Scholar 

  8. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  9. Breuing, A., Wachsmuth, I.: Talking topically to artificial dialog partners: emulating humanlike topic awareness in a virtual agent. In: Filipe, J., Fred, A. (eds.) ICAART 2012. CCIS, vol. 358, pp. 392–406. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36907-0_26

    Chapter  Google Scholar 

  10. Chang, J., Boyd-Graber, J., Gerrish, S., Wang, C., Blei, D.M.: Reading tea leaves: how humans interpret topic models. In: NIPS 2009, pp. 288–296. Curran Associates Inc., Red Hook (2009)

    Google Scholar 

  11. Chen, W.T., Lin, S.C., Huang, S.L., Chung, Y.S., Chen, K.J.: E-HowNet and automatic construction of a lexical ontology. In: COLING 2010, pp. 45–48. Association for Computational Linguistics, Stroudsburg (2010)

    Google Scholar 

  12. Chen, Y., Liu, L.: Development and research of topic detection and tracking. In: 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 170–173, August 2016

    Google Scholar 

  13. Drew, P., Chatwin, J., Collins, S.: Conversation analysis: a method for research into interactions between patients and health-care professionals. Health Expect.: Int. J. Publ. Particip. Health Care Health Policy 4(1), 58–70 (2001)

    Article  Google Scholar 

  14. Gaut, G., Steyvers, M., Imel, Z.E., Atkins, D.C., Smyth, P.: Content coding of psychotherapy transcripts using labeled topic models. IEEE J. Biomed. Health Inform. 21(2), 476–487 (2017)

    Article  Google Scholar 

  15. Gelbukh, A.: Natural language processing. In: Fifth International Conference on Hybrid Intelligent Systems (HIS 2005), pp. 1–6 (2005)

    Google Scholar 

  16. Howes, C., Purver, M., McCabe, R.: Investigating topic modelling for therapy dialogue analysis. In: Proceedings of the IWCS 2013 Workshop on Computational Semantics in Clinical Text (CSCT 2013), pp. 7–16. Association for Computational Linguistics (2013)

    Google Scholar 

  17. Imel, Z.E., Steyvers, M., Atkins, D.C.: Computational psychotherapy research: scaling up the evaluation of patient-provider interactions. Psychotherapy (Chicago, Ill.) 52(1), 19–30 (2015)

    Article  Google Scholar 

  18. Mohr, J.W., Bogdanov, P.: Introduction-topic models: what they are and why they matter. Poetics 41(6), 545–569 (2013). Topic Models and the Cultural Sciences

    Article  Google Scholar 

  19. Khin, N.P.P., Aung, T.N.: Analyzing tagging accuracy of part-of-speech taggers. In: Zin, T.T., Lin, J.C.-W., Pan, J.-S., Tin, P., Yokota, M. (eds.) GEC 2015. AISC, vol. 388, pp. 347–354. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-23207-2_35

    Chapter  Google Scholar 

  20. Ramage, D., Hall, D., Nallapati, R., Manning, C.D.: Labeled LDA: a supervised topic model for credit attribution in multi-labeled corpora. In: EMNLP 2009, pp. 248–256. Association for Computational Linguistics, Stroudsburg (2009)

    Google Scholar 

  21. Ramage, D., Manning, C.D., Dumais, S.: Partially labeled topic models for interpretable text mining. In: KDD 2011, pp. 457–465. ACM, New York (2011)

    Google Scholar 

  22. Röder, M., Both, A., Hinneburg, A.: Exploring the space of topic coherence measures. In: WSDM 2015, pp. 399–408. ACM, New York (2015)

    Google Scholar 

  23. Uysal, A.K., Gunal, S.: The impact of preprocessing on text classification. Inf. Process. Manag. 50(1), 104–112 (2014)

    Article  Google Scholar 

  24. Yeh, J.F., Tan, Y.S., Lee, C.H.: Topic detection and tracking for conversational content by using conceptual dynamic latent Dirichlet allocation. Neurocomputing 216(Suppl. C), 310–318 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Consoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaoua, I., Consoli, S., Härmä, A., Helaoui, R., Reforgiato Recupero, D. (2019). Analysis of Topic Propagation in Therapy Sessions Using Partially Labeled Latent Dirichlet Allocation. In: Koch, F., et al. Artificial Intelligence in Health. AIH 2018. Lecture Notes in Computer Science(), vol 11326. Springer, Cham. https://doi.org/10.1007/978-3-030-12738-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12738-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12737-4

  • Online ISBN: 978-3-030-12738-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics