Abstract
Smart city initiatives have emerged to mitigate the negative effects of a very fast growth of urban areas. A number of universities are applying smart city solutions to face similar challenges in their campuses. In this study, we analyze the possibility of using low cost sensors based on detecting wireless signals of light commodity devices to track the movement of the members of the university community. This tracking information will help the university managers to provide the users with smart services. The first insight is that there were not detected barely movements through the campus during late-night/early morning hours (from 0:00H to 6:00H). In turn, the number of human flows sensed in a given direction is similar to the ones in the opposite one. The analysis of the sensed data has shown that the most mobility occurs during the opening and finishing school hours, as expected. Finally, we observed that the sensors are able to detect vehicular mobility.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abedi, N., Bhaskar, A., Chung, E., Miska, M.: Assessment of antenna characteristic effects on pedestrian and cyclists travel-time estimation based on bluetooth and WiFi MAC addresses. Transp. Res. Part C Emerg. Technol. 60, 124–141 (2015)
Axhausen, K.W., Zimmermann, A., Schönfelder, S., Rindsfüser, G., Haupt, T.: Observing the rhythms of daily life: a six-week travel diary. Transportation 29(2), 95–124 (2002)
Camero, A., Toutouh, J., Stolfi, D.H., Alba, E.: Evolutionary deep learning for car park occupancy prediction in smart cities. In: Battiti, R., Brunato, M., Kotsireas, I., Pardalos, P.M. (eds.) LION 12 2018. LNCS, vol. 11353, pp. 386–401. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05348-2_32
Fujino, T., Kitazawa, M., Yamada, T., Takahashi, M., Yamamoto, G., Yoshikawa, A., Terano, T.: Analyzingin-store shopping paths from indirect observation with RFIDtags communication data. J. Innov. Sustain. RISUS 5(1), 88–96 (2014). ISSN 2179-3565
Hagemann, W., Weinzerl, J.: Automatische erfassung von umsteigern per bluetooth-technologie. Nahverkerspraxis, pp. 31–68. Springer, Heidelberg (2008)
Haseman, R., Wasson, J., Bullock, D.: Real-time measurement of travel time delay in work zones and evaluation metrics using bluetooth probe tracking. Transp. Res. Rec. J. Transp. Res. Board 2169, 40–53 (2010)
Husted, N., Myers, S.: Mobile location tracking in metro areas: malnets and others. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, pp. 85–96. ACM (2010)
Leduc, G.: Road traffic data: collection methods and applications. Working Papers on Energy, Transport and Climate Change, vol. 1, no. 55 (2008)
Liebig, T., Wagoum, A.U.K.: Modelling microscopic pedestrian mobility using bluetooth. In: ICAART, vol. 2, pp. 270–275 (2012)
Luque, J., Toutouh, J., Alba, E.: Reduction of the size of datasets by using evolutionary feature selection: the case of noise in a modern city. In: Herrera, F., Damas, S., Montes, R., Alonso, S., Cordón, Ó., González, A., Troncoso, A. (eds.) CAEPIA 2018. LNCS (LNAI), vol. 11160, pp. 230–239. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00374-6_22
McMichael, I., Khoshnevisan, M.: Uniform sensitivity light curtain, 23 July 1996. uS Patent 5,539,198
Millonig, A., Gartner, G.: Shadowing-tracking-interviewing: How to explore human spatio-temporal behaviour patterns. In: BMI, pp. 1–14. Citeseer (2008)
Mir, Z.H., Toutouh, J., Filali, F., Alba, E.: QoS-aware radio access technology (RAT) selection in hybrid vehicular networks. In: Kassab, M., Berbineau, M., Vinel, A., Jonsson, M., Garcia, F., Soler, J. (eds.) Nets4Cars/Nets4Trains/Nets4Aircraft 2015. LNCS, vol. 9066, pp. 117–128. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17765-6_11
Nesmachnow, S., Rossit, D., Toutouth, J.: Comparison of multiobjective evolutionary algorithms for prioritized urban waste collection in montevideo, uruguay. Electron. Notes Discret. Math. 69, 93–100 (2018)
Oosterlinck, D., Benoit, D.F., Baecke, P., Van de Weghe, N.: Bluetooth tracking of humans in an indoor environment: an application to shopping mall visits. Appl. Geogr. 78, 55–65 (2017)
Pirzada, N., Nayan, M.Y., Hassan, F.S.M.F., Khan, M.A.: Device-free localization technique for indoor detection and tracking of human body: a survey. Procedia Soc. Behav. Sci. 129, 422–429 (2014)
Sapiezynski, P., Stopczynski, A., Gatej, R., Lehmann, S.: Tracking human mobility using WiFi signals. PloS one 10(7), e0130824 (2015)
Saxena, S., Brémond, F., Thonnat, M., Ma, R.: Crowd behavior recognition for video surveillance. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 970–981. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88458-3_88
Van der Spek, S., Van Schaick, J., De Bois, P., De Haan, R.: Sensing human activity: GPS tracking. Sensors 9(4), 3033–3055 (2009)
Stolfi, D.H., Alba, E.: Smart mobility policies with evolutionary algorithms: the adapting info panel case. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO 2015, pp. 1287–1294. ACM, New York (2015)
Toutouh, J., Arellano-Verdejo, J., Alba, E.: Enabling low cost smart road traffic sensing. In: The 12th edition of the Metaheuristics International Conference (MIC 2017), pp. 13–15 (2017)
Toutouh, J., Rossit, D., Nesmachnow, S.: Computational intelligence for locating garbage accumulation points in urban scenarios. In: Battiti, R., Brunato, M., Kotsireas, I., Pardalos, P.M. (eds.) LION 12 2018. LNCS, vol. 11353, pp. 411–426. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05348-2_34
Versichele, M., Neutens, T., Claeys Bouuaert, M., Van de Weghe, N.: Time-geographic derivation of feasible co-presence opportunities from network-constrained episodic movement data. Trans. GIS 18(5), 687–703 (2014)
Versichele, M., Neutens, T., Delafontaine, M., Van de Weghe, N.: The use of bluetooth for analysing spatiotemporal dynamics of human movement at mass events: a case study of the ghent festivities. Appl. Geogr. 32(2), 208–220 (2012)
Wang, Y., Yang, J., Chen, Y., Liu, H., Gruteser, M., Martin, R.P.: Tracking human queues using single-point signal monitoring. In: Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services, pp. 42–54. ACM (2014)
Yamin, M., Ades, Y.: Crowd management with RFID and wireless technologies. In: First International Conference on Networks and Communications, NETCOM 2009, pp. 439–442. IEEE (2009)
Yu, Z., Liang, Y., Xu, B., Yang, Y., Guo, B.: Towards a smart campus with mobile social networking. In: 2011 International Conference on Internet of Things and 4th International Conference on Cyber, Physical and Social Computing, pp. 162–169 (2011)
Acknowledgements
This research has been partially funded by the Spanish MINECO and FEDER projects TIN2017-88213-R (http://6city.lcc.uma.es) and TIN2016-81766-REDT (http://cirti.es). University of Malaga. International Campus of Excellence Andalucia TECH.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Toutouh, J., Luque, J., Alba, E. (2019). Smart Campus Human Tracking: The Case of University of Málaga. In: Nesmachnow, S., Hernández Callejo, L. (eds) Smart Cities. ICSC-CITIES 2018. Communications in Computer and Information Science, vol 978. Springer, Cham. https://doi.org/10.1007/978-3-030-12804-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-12804-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-12803-6
Online ISBN: 978-3-030-12804-3
eBook Packages: Computer ScienceComputer Science (R0)