Skip to main content

Acquire, Augment, Segment and Enjoy: Weakly Supervised Instance Segmentation of Supermarket Products

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2018)

Abstract

Grocery stores have thousands of products that are usually identified using barcodes with a human in the loop. For automated checkout systems, it is necessary to count and classify the groceries efficiently and robustly. One possibility is to use a deep learning algorithm for instance-aware semantic segmentation. Such methods achieve high accuracies but require a large amount of annotated training data.

We propose a system to generate the training annotations in a weakly supervised manner, drastically reducing the labeling effort. We assume that for each training image, only the object class is known. The system automatically segments the corresponding object from the background. The obtained training data is augmented to simulate variations similar to those seen in real-world setups.

Our experiments show that with appropriate data augmentation, our approach obtains competitive results compared to a fully-supervised baseline, while drastically reducing the amount of manual labeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borji, A., Cheng, M.M., Jiang, H., Li, J.: Salient object detection: a benchmark. IEEE Trans. Image Process. 24(12), 5706–5722 (2015)

    Article  MathSciNet  Google Scholar 

  2. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3213–3223 (2016)

    Google Scholar 

  3. Deselaers, T., Alexe, B., Ferrari, V.: Weakly supervised localization and learning with generic knowledge. Int. J. Comput. Vis. 100(3), 275–293 (2012)

    Article  MathSciNet  Google Scholar 

  4. ECRS: RAPTOR. https://www.ecrs.com/products/point-of-sale-pos/accelerated-checkout/. Accessed 20 June 2018

  5. Follmann, P., Böttger, T., Härtinger, P., König, R., Ulrich, M.: MVTec D2S: densely segmented supermarket dataset. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 581–597. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_35

    Chapter  Google Scholar 

  6. Follmann, P., König, R., Härtinger, P., Klostermann, M.: Learning to see the invisible: end-to-end trainable amodal instance segmentation. CoRR abs/1804.08864 (2018). http://arxiv.org/abs/1804.08864

  7. Girshick, R., Radosavovic, I., Gkioxari, G., Dollár, P., He, K.: Detectron (2018). https://github.com/facebookresearch/detectron

  8. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1059–1067 (2017)

    Google Scholar 

  9. Hu, R., Dollár, P., He, K., Darrell, T., Girshick, R.: Learning to segment every thing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  10. ITAB: HyperFLOW. https://itab.com/en/itab/checkout/self-checkouts/. Accessed 20 June 2018

  11. Khoreva, A., Benenson, R., Hosang, J., Hein, M., Schiele, B.: Simple does it: weakly supervised instance and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 876–885 (2017)

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  13. Li, H., Lu, H., Lin, Z., Shen, X., Price, B.: Inner and inter label propagation: salient object detection in the wild. IEEE Trans. Image Process. 24(10), 3176–3186 (2015)

    Article  MathSciNet  Google Scholar 

  14. Li, K., Malik, J.: Amodal instance segmentation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 677–693. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_42

    Chapter  Google Scholar 

  15. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  16. Liu, Z., Zou, W., Le Meur, O.: Saliency tree: a novel saliency detection framework. IEEE Trans. Image Process. 23(5), 1937–1952 (2014)

    Article  MathSciNet  Google Scholar 

  17. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  18. Phong, B.T.: Illumination for computer generated pictures. Commun. ACM 18(6), 311–317 (1975)

    Article  Google Scholar 

  19. Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground extraction using iterated graph cuts. In: ACM Transactions on Graphics (TOG), vol. 23, pp. 309–314. ACM (2004)

    Google Scholar 

  20. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  21. Simard, P.Y., Steinkraus, D., Platt, J.C., et al.: Best practices for convolutional neural networks applied to visual document analysis. In: Proceedings of the International Conference on Document Analysis and Recognition (ICDAR), vol. 3, pp. 958–962 (2003)

    Google Scholar 

  22. Vezhnevets, A., Ferrari, V., Buhmann, J.M.: Weakly supervised semantic segmentation with a multi-image model. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 643–650 (2011)

    Google Scholar 

  23. Zhu, Y., Tian, Y., Metaxas, D., Dollar, P.: Semantic amodal segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1464–1472 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Follmann .

Editor information

Editors and Affiliations

Appendix

Appendix

In Tables 2, 3 and 4 we show the influence of augmenting a different amount of images and adding specific augmentations for baseline, weakly, and weakly cleaned, respectively. The performance is given in terms of mAP percentage values. Abbreviations for augmentation types are as follows: neighboring (NB), random background (RB), reflections (RE).

 

Table 2. Baseline results
Table 3. Weakly results
Table 4. Weakly cleaned results

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Follmann, P., Drost, B., Böttger, T. (2019). Acquire, Augment, Segment and Enjoy: Weakly Supervised Instance Segmentation of Supermarket Products. In: Brox, T., Bruhn, A., Fritz, M. (eds) Pattern Recognition. GCPR 2018. Lecture Notes in Computer Science(), vol 11269. Springer, Cham. https://doi.org/10.1007/978-3-030-12939-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12939-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12938-5

  • Online ISBN: 978-3-030-12939-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics