Skip to main content

Deep Distance Transform to Segment Visually Indistinguishable Merged Objects

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11269))

Included in the following conference series:

Abstract

We design a two stage image segmentation method, comprising a distance transform estimating neural network and watershed segmentation. It allows segmentation and tracking of colliding objects without any assumptions on object behavior or global object appearance as the proposed machine learning step is trained on contour information only. Our method is also capable of segmenting partially vanishing contact surfaces of visually merged objects. The evaluation is performed on a dataset of collisions of Drosophila melanogaster larvae manually labeled with pixel accuracy. The proposed pipeline needs no manual parameter tuning and operates at high frame rates. We provide a detailed evaluation of the neural network design including 1200 trained networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Please note that reasonable small values (\(1 < \sigma \le 7\)) lead to comparable results.

References

  1. Bai, M., Urtasun, R.: Deep watershed transform for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2858–2866 (2017). https://doi.org/10.1109/CVPR.2017.305

  2. Dell, A.I., et al.: Automated image-based tracking and its application in ecology. Trends Ecol. Evol. 29(7), 417–428 (2014). https://doi.org/10.1016/j.tree.2014.05.004

    Article  Google Scholar 

  3. Fiaschi, L., et al.: Tracking indistinguishable translucent objects over time using weakly supervised structured learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2736–2743 (2014). https://doi.org/10.1109/CVPR.2014.356

  4. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  5. Jia, Y., et al.: Caffe: Convolutional architecture for fast feature embedding. CoRR abs/1408.5093 (2014)

    Google Scholar 

  6. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014)

    Google Scholar 

  7. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In: Proceedings of the 30th Annual Conference on Neural Information Processing Systems, pp. 972–981 (2017)

    Google Scholar 

  8. Klemm, S., Scherzinger, A., Drees, D., Jiang, X.: Barista - a graphical tool for designing and training deep neural networks. CoRR abs/1802.04626 (2018)

    Google Scholar 

  9. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.: Efficient backprop. In: Montavon, G., Orr, G.B., Müller, K. (eds.) Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science, vol. 7700, 2nd edn, pp. 9–48. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_3

    Chapter  Google Scholar 

  10. Michels, T., Berh, D., Jiang, X.: An RJMCMC-based method for tracking and resolving collisions of drosophila larvae. IEEE/ACM Trans. Comput. Biol. Bioinform. (2017). https://doi.org/10.1109/TCBB.2017.2779141

  11. Pérez-Escudero, A., Vicente-Page, J., Hinz, R.C., Arganda, S., de Polavieja, G.G.: idTracker: tracking individuals in a group by automatic identification of unmarked animals. Nat. Methods 11, (2014). https://doi.org/10.1038/nmeth.2994

    Article  Google Scholar 

  12. Risse, B., Otto, N., Berh, D., Jiang, X., Kiel, M., Klämbt, C.: FIM\(^{2{\rm c}}\): multicolor, multipurpose imaging system to manipulate and analyze animal behavior. IEEE Trans. Biomed. Eng. 64(3), 610–620 (2017). https://doi.org/10.1109/TBME.2016.2570598

    Article  Google Scholar 

  13. Romero-Ferrero, F., Bergomi, M.G., Hinz, R., Heras, F.J.H., de Polavieja, G.G.: idtracker.ai: tracking all individuals in large collectives of unmarked animals. CoRR abs/1803.04351 (2018)

    Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241 (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Google Scholar 

  15. Scherzinger, A., Klemm, S., Berh, D., Jiang, X.: CNN-based background subtraction for long-term in-vial FIM imaging. In: Proceedings of the 17th International Conference on Computer Analysis of Images and Patterns, pp. 359–371 (2017). https://doi.org/10.1007/978-3-319-64689-3_29

    Chapter  Google Scholar 

  16. Yurchenko, V., Lempitsky, V.S.: Parsing images of overlapping organisms with deep singling-out networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4752–4760 (2017). https://doi.org/10.1109/CVPR.2017.505

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyi Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klemm, S., Jiang, X., Risse, B. (2019). Deep Distance Transform to Segment Visually Indistinguishable Merged Objects. In: Brox, T., Bruhn, A., Fritz, M. (eds) Pattern Recognition. GCPR 2018. Lecture Notes in Computer Science(), vol 11269. Springer, Cham. https://doi.org/10.1007/978-3-030-12939-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12939-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12938-5

  • Online ISBN: 978-3-030-12939-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics