Skip to main content

Illumination Estimation Is Sufficient for Indoor-Outdoor Image Classification

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11269))

Included in the following conference series:

  • 2642 Accesses

Abstract

Indoor-outdoor image classification is a well-known problem for which multiple solutions have been proposed, many of which use both low-level and high-level features put into various models. Despite varying complexity, the accuracy of most of these models is reported to be around 90%. In this paper it is shown that the same accuracy can be obtained by simple manipulation of only low-level features extracted from the image in the early phase of image formation and based on the simplest forms of illumination estimation, namely methods such as Gray-World. Additionally, it is shown how using the built-in camera auto white balance is also enough to effectively achieve state-of-the-art indoor-outdoor classification accuracy. The results are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banić, N., Lončarić, S.: Color Cat: remembering colors for illumination estimation. IEEE Sig. Process. Lett. 22(6), 651–655 (2015)

    Article  Google Scholar 

  2. Banić, N., Lončarić, S.: Using the red chromaticity for illumination estimation. In: 2015 9th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 131–136. IEEE (2015)

    Google Scholar 

  3. Banić, N., Lončarić, S.: Unsupervised learning for color constancy. arXiv preprint arXiv:1712.00436 (2017)

  4. Barla, A., Odone, F., Verri, A.: Histogram intersection kernel for image classification. In: 2003 Proceedings of the International Conference on Image Processing, ICIP 2003, vol. 3, p. III-513. IEEE (2003)

    Google Scholar 

  5. Bianco, S., Ciocca, G., Cusano, C., Schettini, R.: Improving color constancy using indoor-outdoor image classification. IEEE Trans. Image Process. 17(12), 2381–2392 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buchsbaum, G.: A spatial processor model for object colour perception. J. Franklin Inst. 310(1), 1–26 (1980)

    Article  Google Scholar 

  7. Chen, C., Ren, Y., Kuo, C.-C.J.: Large-scale indoor/outdoor image classification via expert decision fusion (EDF). In: Jawahar, C.V., Shan, S. (eds.) ACCV 2014. LNCS, vol. 9008, pp. 426–442. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16628-5_31

    Chapter  Google Scholar 

  8. Cheng, D., Abdelhamed, A., Price, B., Cohen, S., Brown, M.S.: Two illuminant estimation and user correction preference. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 469–477 (2016)

    Google Scholar 

  9. Cheng, D., Prasad, D.K., Brown, M.S.: Illuminant estimation for color constancy: why spatial-domain methods work and the role of the color distribution. JOSA A 31(5), 1049–1058 (2014)

    Article  Google Scholar 

  10. Cvetković, S.S., Nikolić, S.V., Ilić, S.: Effective combining of color and texture descriptors for indoor-outdoor image classification. Facta Universitatis Ser. Electron. Energ. 27(3), 399–410 (2014)

    Article  Google Scholar 

  11. Ebner, M.: Color Constancy. The Wiley-IS&T Series in Imaging Science and Technology. Wiley, Chichester (2007)

    MATH  Google Scholar 

  12. Finlayson, G.D.: Corrected-moment illuminant estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1904–1911 (2013)

    Google Scholar 

  13. Finlayson, G.D., Trezzi, E.: Shades of gray and colour constancy. In: Color and Imaging Conference, vol. 2004, pp. 37–41. Society for Imaging Science and Technology (2004)

    Google Scholar 

  14. Funt, B., Shi, L.: The rehabilitation of MaxRGB. In: Color and Imaging Conference, vol. 2010, pp. 256–259. Society for Imaging Science and Technology (2010)

    Google Scholar 

  15. Gehler, P.V., Rother, C., Blake, A., Minka, T., Sharp, T.: Bayesian color constancy revisited. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  16. Ghomsheh, A.N., Talebpour, A.: A new method for indoor-outdoor image classification using color correlated temperature. Int. J. Image Process 6(3), 167–181 (2012)

    Google Scholar 

  17. Gijsenij, A., Gevers, T., Van De Weijer, J.: Computational color constancy: survey and experiments. IEEE Trans. Image Process. 20(9), 2475–2489 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gloe, T., Böhme, R.: The ‘Dresden Image Database’ for benchmarking digital image forensics. In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 1584–1590. ACM (2010)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  20. Hu, G.H., Bu, J.J., Chen, C.: A novel Bayesian framework for indoor-outdoor image classification. In: 2003 International Conference on Machine Learning and Cybernetics, vol. 5, pp. 3028–3032. IEEE (2003)

    Google Scholar 

  21. Joze, V., Reza, H.: Estimating the colour of the illuminant using specular reflection and exemplar-based method. Ph.D. thesis, Applied Sciences: School of Computing Science (2013)

    Google Scholar 

  22. Kim, S.J., Lin, H.T., Lu, Z., Süsstrunk, S., Lin, S., Brown, M.S.: A new in-camera imaging model for color computer vision and its application. IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2289–2302 (2012)

    Article  Google Scholar 

  23. Kim, W., Park, J., Kim, C.: A novel method for efficient indoor-outdoor image classification. J. Sig. Process. Syst. 61(3), 251–258 (2010)

    Article  Google Scholar 

  24. Shi, L., Funt, B.: Re-processed version of the gehler color constancy dataset of 568 images (2018). http://www.cs.sfu.ca/~colour/data/

  25. Land, E.H.: The retinex theory of color vision. Sci. Am. 237(6), 108–128 (1977)

    Article  Google Scholar 

  26. Luo, J., Savakis, A.: Indoor vs outdoor classification of consumer photographs using low-level and semantic features. In: 2001 Proceedings of the International Conference on Image Processing, vol. 2, pp. 745–748. IEEE (2001)

    Google Scholar 

  27. Nguyen, R.M., Brown, M.S.: RAW image reconstruction using a self-contained sRGB-JPEG image with only 64 KB overhead. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1655–1663 (2016)

    Google Scholar 

  28. Nguyen, R.M., Brown, M.S.: RAW image reconstruction using a self-contained sRGB-JPEG image with small memory overhead. Int. J. Comput. Vis. 126(6), 637–650 (2018)

    Article  MathSciNet  Google Scholar 

  29. Payne, A., Singh, S.: Indoor vs. outdoor scene classification in digital photographs. Pattern Recogn. 38(10), 1533–1545 (2005)

    Article  Google Scholar 

  30. Serrano, N., Savakis, A., Luo, A.: A computationally efficient approach to indoor/outdoor scene classification. In: 2002 Proceedings of the 16th International Conference on Pattern Recognition, vol. 4, pp. 146–149. IEEE (2002)

    Google Scholar 

  31. Shwetha, T., Shaila, H.: Indoor outdoor scene classification in digital images. Int. J. Electr. Electron. Comput. Syst. 2(11–12), 34–38 (2014)

    Google Scholar 

  32. Steinwart, I., Christmann, A.: Support Vector Machines. ISS. Springer Science & Business Media, New York (2008). https://doi.org/10.1007/978-0-387-77242-4

    Book  MATH  Google Scholar 

  33. Szummer, M., Picard, R.W.: Indoor-outdoor image classification. In: 1998 Proceedings of the IEEE International Workshop on Content-Based Access of Image and Video Database, pp. 42–51. IEEE (1998)

    Google Scholar 

  34. Tahir, W., Majeed, A., Rehman, T.: Indoor/outdoor image classification using gist image features and neural network classifiers. In: 2015 12th International Conference on High-Capacity Optical Networks and Enabling/Emerging Technologies (HONET), pp. 1–5. IEEE (2015)

    Google Scholar 

  35. Vailaya, A., Figueiredo, M.A., Jain, A.K., Zhang, H.J.: Image classification for content-based indexing. IEEE Trans. Image Process. 10(1), 117–130 (2001)

    Article  MATH  Google Scholar 

  36. Zhu, Y., Newsam, S.: Land use classification using convolutional neural networks applied to ground-level images. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, p. 61. ACM (2015)

    Google Scholar 

  37. Zou, J., Li, W., Chen, C., Du, Q.: Scene classification using local and global features with collaborative representation fusion. Inf. Sci. 348, 209–226 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

We thank the anonymous reviewers for their kind suggestions. This work has been supported by the Croatian Science Foundation under Project IP-06-2016-2092.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Banić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Banić, N., Lončarić, S. (2019). Illumination Estimation Is Sufficient for Indoor-Outdoor Image Classification. In: Brox, T., Bruhn, A., Fritz, M. (eds) Pattern Recognition. GCPR 2018. Lecture Notes in Computer Science(), vol 11269. Springer, Cham. https://doi.org/10.1007/978-3-030-12939-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12939-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12938-5

  • Online ISBN: 978-3-030-12939-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics