Abstract
This paper describes DeepKey, an end-to-end deep neural architecture capable of taking a digital RGB image of an ‘everyday’ scene containing a pin tumbler key (e.g. lying on a table or carpet) and fully automatically inferring a printable 3D key model. We report on the key detection performance and describe how candidates can be transformed into physical prints. We show an example opening a real-world lock. Our system is described in detail, providing a breakdown of all components including key detection, pose normalisation, bitting segmentation and 3D model inference. We provide an in-depth evaluation and conclude by reflecting on limitations, applications, potential security risks and societal impact. We contribute the DeepKey Datasets of 5, 300+ images covering a few test keys with bounding boxes, pose and unaligned mask data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
DeepKey Datasets can be requested via https://data.bris.ac.uk.
References
Adelson, E.H., Bergen, J.R., Burt, P.J., Ogden, J.M.: Pyramid methods in image processing. RCA Eng. 29(4), 33–41 (1984)
Burgess, B., Wustrow, E., Halderman, J.A.: Replication prohibited: attacking restricted keyways with 3D-printing. In: WOOT (2015)
Dai, J., et al.: Deformable convolutional networks. CoRR abs/1703.06211 (2017). https://doi.org/10.1109/ICCV.2017.89, http://arxiv.org/abs/1703.06211
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2012 (VOC 2012) Results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
Girshick, R.B.: Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448 (2015). https://doi.org/10.1109/ICCV.2015.169
Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. CoRR abs/1311.2524 (2013). https://doi.org/10.1109/CVPR.2014.81, http://arxiv.org/abs/1311.2524
He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017). https://doi.org/10.1109/ICCV.2017.322
He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. CoRR abs/1406.4729 (2014). https://doi.org/10.1109/TPAMI.2015.2389824, http://arxiv.org/abs/1406.4729
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90
Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: NIPS (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012). https://doi.org/10.1145/3065386
Laxton, B., Wang, K., Savage, S.: Reconsidering physical key secrecy: teleduplication via optical decoding. In: ACM Conference on Computer and Communications Security (2008). https://doi.org/10.1145/1455770.1455830
Lin, T.Y., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936–944 (2017). https://doi.org/10.1109/CVPR.2017.106
Lin, T., et al.: Microsoft COCO: common objects in context. CoRR abs/1405.0312 (2014). http://arxiv.org/abs/1405.0312
Marius Kintel, C.W.: Openscad. http://www.blender.org/
Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. CoRR abs/1612.08242 (2016). http://arxiv.org/abs/1612.08242
Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2015). https://doi.org/10.1109/TPAMI.2016.2577031
Schmidhuber, J.: Deep learning in neural networks: an overview. CoRR abs/1404.7828 (2014). https://doi.org/10.1016/j.neunet.2014.09.003, http://arxiv.org/abs/1404.7828
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 618–626 (2017). https://doi.org/10.1109/ICCV.2017.74
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. CoRR abs/1312.6229 (2013)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)
Ultimaker BV: Ultimaker 2 plus technical specifications (2016). https://ultimaker.com/en/products/ultimaker-2-plus/specifications
Univeristy of Bristol Advanced Computing Research Centre: Blue crystal phase 4 (2017). https://www.acrc.bris.ac.uk/acrc/phase4.htm
Zakka, K.: Spatial transformer network implementation, January 2017. https://github.com/kevinzakka/spatial-transformer-network
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Smith, R., Burghardt, T. (2019). DeepKey: Towards End-to-End Physical Key Replication from a Single Photograph. In: Brox, T., Bruhn, A., Fritz, M. (eds) Pattern Recognition. GCPR 2018. Lecture Notes in Computer Science(), vol 11269. Springer, Cham. https://doi.org/10.1007/978-3-030-12939-2_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-12939-2_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-12938-5
Online ISBN: 978-3-030-12939-2
eBook Packages: Computer ScienceComputer Science (R0)