Skip to main content

Parcel Tracking by Detection in Large Camera Networks

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2018)

Abstract

Inside parcel distribution hubs, several tenth of up 100 000 parcels processed each day get lost. Human operators have to tediously recover these parcels by searching through large amounts of video footage from the installed large-scale camera network. We want to assist these operators and work towards an automatic solution. The challenge lies both in the size of the hub with a high number of cameras and in the adverse conditions. We describe and evaluate an industry scale tracking framework based on state-of-the-art methods such as Mask R-CNN. Moreover, we adapt a siamese network inspired feature vector matching with a novel feature improver network, which increases tracking performance. Our calibration method exploits a calibration parcel and is suitable for both overlapping and non-overlapping camera views. It requires little manual effort and needs only a single drive-by of the calibration parcel for each conveyor belt. With these methods, most parcels can be tracked start-to-end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the CLEAR MOT metrics. EURASIP J. Image Video Process. 2008 (2008). https://doi.org/10.1155/2008/246309

    Article  Google Scholar 

  2. Bewley, A., Ge, Z., Ott, L., Ramos, F.T., Upcroft, B.: Simple online and realtime tracking. In: 2016 IEEE International Conference on Image Processing, pp. 3464–3468 (2016). https://doi.org/10.1109/ICIP.2016.7533003

  3. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: The Twenty-Third IEEE Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960

  4. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a Siamese time delay neural network. In: Advances in Neural Information Processing Systems, vol. 6, pp. 737–744 (1993)

    Google Scholar 

  5. Chahyati, D., Fanany, M.I., Arymurthy, A.M.: Tracking people by detection using CNN features. Proc. Comput. Sci. 124, 167–172 (2017). https://doi.org/10.1016/j.procs.2017.12.143

    Article  Google Scholar 

  6. Danelljan, M., Khan, F.S., Felsberg, M., van de Weijer, J.: Adaptive color attributes for real-time visual tracking. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1090–1097 (2014). https://doi.org/10.1109/CVPR.2014.143

  7. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Marín-Jiménez, M.J.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn. 47(6), 2280–2292 (2014). https://doi.org/10.1016/j.patcog.2014.01.005

    Article  Google Scholar 

  8. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: Proceedings of the British Machine Vision Conference 2006, pp. 47–56 (2006). https://doi.org/10.5244/C.20.6

  9. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: IEEE International Conference on Computer Vision, pp. 2980–2988 (2017). https://doi.org/10.1109/ICCV.2017.322

  10. Held, D., Thrun, S., Savarese, S.: Learning to track at 100 FPS with deep regression networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 749–765. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_45

    Chapter  Google Scholar 

  11. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 702–715. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_50

    Chapter  Google Scholar 

  12. Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: automatic detection of tracking failures. In: 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). https://doi.org/10.1109/ICPR.2010.675

  13. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012). https://doi.org/10.1109/TPAMI.2011.239

    Article  Google Scholar 

  14. Kang, K., Ouyang, W., Li, H., Wang, X.: Object detection from video tubelets with convolutional neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 817–825 (2016). https://doi.org/10.1109/CVPR.2016.95

  15. Karaca, H.N., Akınlar, C.: A multi-camera vision system for real-time tracking of parcels moving on a conveyor belt. In: Yolum, I., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 708–717. Springer, Heidelberg (2005). https://doi.org/10.1007/11569596_73

    Chapter  Google Scholar 

  16. Kroeger, T., Timofte, R., Dai, D., Van Gool, L.: Fast optical flow using dense inverse search. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 471–488. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_29

    Chapter  Google Scholar 

  17. Kuhn, H.W., Yaw, B.: The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2, 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  18. Leal-Taixé, L., Canton-Ferrer, C., Schindler, K.: Learning by tracking: Siamese CNN for robust target association. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 418–425 (2016). https://doi.org/10.1109/CVPRW.2016.59

  19. Li, Y., Qi, H., Dai, J., Ji, X., Wei, Y.: Fully convolutional instance-aware semantic segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, pp. 4438–4446 (2017). https://doi.org/10.1109/CVPR.2017.472

  20. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  21. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  22. Lukezic, A., Vojír, T., Zajc, L.C., Matas, J., Kristan, M.: Discriminative correlation filter tracker with channel and spatial reliability. Int. J. Comput. Vis. 126(7), 671–688 (2018). https://doi.org/10.1007/s11263-017-1061-3

    Article  MathSciNet  Google Scholar 

  23. Matterport: Mask R-CNN for object detection and segmentation. https://github.com/matterport/Mask_RCNN

  24. Milan, A., Leal-Taixé, L., Reid, I.D., Roth, S., Schindler, K.: MOT16: a benchmark for multi-object tracking (2016). https://arxiv.org/abs/1603.00831

  25. Milan, A., Rezatofighi, S.H., Dick, A.R., Reid, I.D., Schindler, K.: Online multi-target tracking using recurrent neural networks. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pp. 4225–4232 (2017)

    Google Scholar 

  26. Radke, R.J., Andra, S., Al-Kofahi, O., Roysam, B.: Image change detection algorithms: a systematic survey. IEEE Trans. Image Process. 14(3), 294–307 (2005). https://doi.org/10.1109/TIP.2004.838698

    Article  MathSciNet  Google Scholar 

  27. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement (2018). https://arxiv.org/abs/1804.02767

  28. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  29. Shin, I.S., Nam, S.H., Yu, H.G., Roberts, R.G., Moon, S.B.: Conveyor visual tracking using robot vision. In: Proceedings of 2006 Florida Conference on Recent Advances in Robotics, pp. 1–5. Citeseer (2006)

    Google Scholar 

  30. Tang, Z., Miao, Z., Wan, Y.: Background subtraction using running Gaussian average and frame difference. In: Ma, L., Rauterberg, M., Nakatsu, R. (eds.) ICEC 2007. LNCS, vol. 4740, pp. 411–414. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74873-1_50

    Chapter  Google Scholar 

  31. Tomasi, C., Kanade, T.: Detection and tracking of feature points. Technical report. Carnegie Mellon University, Technical Report CMU-CS-91-132 (1991)

    Google Scholar 

  32. Wang, X., Türetken, E., Fleuret, F., Fua, P.: Tracking interacting objects optimally using integer programming. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 17–32. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_2

    Chapter  Google Scholar 

  33. Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. In: Advances in Neural Information Processing Systems, vol. 18, pp. 1473–1480 (2005)

    Google Scholar 

  34. Zeiler, M.D.: ADADELTA: an adaptive learning rate method (2012). https://arxiv.org/abs/1212.5701

Download references

Acknowledgments

This work was supported by the Central Innovation Programme for SMEs of the Federal Ministry for Economic Affairs and Energy of Germany under grant agreement number 16KN044302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Clausen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 6877 KB)

Supplementary material 2 (mp4 11745 KB)

Supplementary material 3 (txt 1 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Clausen, S., Zelenka, C., Schwede, T., Koch, R. (2019). Parcel Tracking by Detection in Large Camera Networks. In: Brox, T., Bruhn, A., Fritz, M. (eds) Pattern Recognition. GCPR 2018. Lecture Notes in Computer Science(), vol 11269. Springer, Cham. https://doi.org/10.1007/978-3-030-12939-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12939-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12938-5

  • Online ISBN: 978-3-030-12939-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics