Skip to main content

Unmanned Ground Vehicles in Precision Farming Services: An Integrated Emulation Modelling Approach

  • Conference paper
  • First Online:
Information and Communication Technologies in Modern Agricultural Development (HAICTA 2017)

Abstract

Autonomous systems are a promising alternative for safely executing precision farming activities in a 24/7 perspective. In this context Unmanned Ground Vehicles (UGVs) are used in custom agricultural fields, with sophisticated sensors and data fusion techniques for real-time mapping and navigation. The aim of this study is to present a simulation software tool for providing effective and efficient farming activities in orchard fields and demonstrating the applicability of simulation in routing algorithms, hence increasing productivity, while dynamically addressing operational and tactical level uncertainties. The three dimensional virtual world includes the field layout and the static objects (orchard trees, obstacles, physical boundaries) and is constructed in the open source Gazebo simulation software while the Robot Operating System (ROS) and the implemented algorithms are tested using a custom vehicle. As a result a routing algorithm is executed and enables the UGV to pass through all the orchard trees while dynamically avoiding static and dynamic obstacles. Unlike existing sophisticated tools, the developed mechanism could accommodate an extensive variety of agricultural activities and could be transparently transferred from the simulation environment to real world ROS compatible UGVs providing user-friendly and highly customizable navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bechtsis, D., Tsolakis, N., Vlachos, D., Iakovou, E.: Sustainable supply chain management in the digitalisation era: the impact of automated guided vehicles. J. Cleaner Prod. 142(4), 3970–3984 (2017)

    Article  Google Scholar 

  2. Srai, J.S., Gregory, M.J.: A supply network configuration perspective on international supply chain development. Int. J. Oper. Prod. Manage. 28(5), 386–411 (2008)

    Article  Google Scholar 

  3. Bechar, A., Vigneault, C.: Agricultural robots for field operations: concepts and components. Biosyst. Eng. 149, 94–111 (2016)

    Article  Google Scholar 

  4. Tsolakis, N., Bechtsis, D., Srai, J.S.: Intelligent autonomous vehicles in digital supply chains: from conceptualisation, to simulation modelling, to real-world operations. Bus. Process Manage. J. (2018, In Press)

    Google Scholar 

  5. Walker, G.H., Stanton, N.A., Young, M.S.: Feedback and driver situation awareness (SA): a comparison of SA measures and contexts. Transp. Res. Part F: Traffic Psychol. Behav. 11, 282–299 (2008)

    Article  Google Scholar 

  6. Finomore, V., Matthews, G., Shaw, T., Warm, J.: Predicting vigilance: a fresh look at an old problem. Ergonomics 52, 791–808 (2009)

    Article  Google Scholar 

  7. Kaber, D.B., Endsley, M.R.: The effects of level of automation and adaptive automation on human performance, situation awareness and workload in a dynamic control task. Theor. Issues Ergon. Sci. 5, 113–153 (2004)

    Article  Google Scholar 

  8. Billings, C.E.: Aviation Automation: The Search for a Human-Centered Approach. Lawrence Erlbaum Associates, Mahwah (1996)

    Google Scholar 

  9. Ho, Y.-C., Liu, H.-C., Yih, Y.: A multiple-attribute method for concurrently solving the pickup-dispatching problem and the load-selection problem of multiple-load AGVs. J. Manufact. Syst. 31(3), 288–300 (2012)

    Article  Google Scholar 

  10. Zheng, H., Negenborn, R.R., Lodewijks, G.: Closed-loop scheduling and control of waterborne AGVs for energy-efficient inter terminal transport. Transp. Res. Part E: Logistics Transp. Rev. 105, 261–278 (2017)

    Article  Google Scholar 

  11. Tremblay, N., Fallon, E., Ziadi, N.: Sensing of crop nitrogen status: opportunities, tools, limitations, and supporting information requirements. Horttechnology 21(3), 274–281 (2011)

    Article  Google Scholar 

  12. Bochtis, D.D., Sørensen, C.G.: The vehicle routing problem in field logistics. Biosyst. Eng. 104(4), 447–457 (2009)

    Article  Google Scholar 

  13. Bochtis, D.D., Sørensen, C.G., Busato, P.: Advances in agricultural machinery management: a review. Biosyst. Eng. 126, 69–81 (2014)

    Article  Google Scholar 

  14. Wulfsohn, D., Aravena Zamora, F., Potin Téllez, C., Zamora Lagos, I., García-Fiñana, M.: Multilevel systematic sampling to estimate total fruit number for yield forecasts. Precis. Agric. 13(2), 256–275 (2012)

    Article  Google Scholar 

  15. Prieto-Araujo, E., Olivella-Rosell, P., Cheah-Mañe, M., Villafafila-Robles, R., Gomis-Bellmunt, O.: Renewable energy emulation concepts for microgrids. Renew. Sustain. Energy Rev. 50, 325–345 (2015)

    Article  Google Scholar 

  16. Auat Cheein, F.A., Carelli, R.: Agricultural robotics: unmanned robotic service units in agricultural tasks. IEEE Ind. Electron. Mag. 7(3), 48–58 (2013)

    Article  Google Scholar 

  17. Cariou, C., Lenain, R., Thuilot, B., Berducat, M.: Automatic guidance of a four-wheel-steering mobile robot for accurate field operations. J. Field Robot. 26(6–7), 504–518 (2009)

    Article  Google Scholar 

  18. Christiansen, P., Nielsen, L.N., Steen, K.A., Jørgensen, R.N., Karstoft, H.: DeepAnomaly: combining background subtraction and deep learning for detecting obstacles and anomalies in an agricultural field. Sensors 16(11), 1904 (2016)

    Article  Google Scholar 

  19. Eaton, R., Katupitiya, J., Siew, K.W., Howarth, B.: Autonomous farming: modeling and control of agricultural machinery in a unified framework. In: Proceedings of 15th International Conference on Mechatronics and Machine Vision in Practice, pp. 499–504 (2008)

    Google Scholar 

  20. García-Pérez, L., García-Alegre, M.C., Ribeiro, A., Guinea, D.: An agent of behaviour architecture for unmanned control of a farming vehicle. Comput. Electron. Agric. 60(1), 39–48 (2008)

    Article  Google Scholar 

  21. Bengochea-Guevara, J.M., Conesa-Muñoz, J., Andújar, D., Ribeiro, A.: Merge fuzzy visual servoing and GPS-based planning to obtain a proper navigation behavior for a small crop-inspection robot. Sensors 16(3), 276 (2016)

    Article  Google Scholar 

  22. Duggal, V., Sukhwani, M., Bipin, K., Reddy, G.S., Krishna, K.M.: Plantation monitoring and yield estimation using autonomous quadcopter for precision agriculture. In: 2016 IEEE International Conference on Robotics and Automation (ICRA2016), pp. 5121–5127 (2016)

    Google Scholar 

  23. Bechtsis, D., Tsolakis, N., Vlachos, D., Srai, J.S.: Intelligent autonomous vehicles in digital supply chains: a framework for integrating innovations towards sustainable value networks. J. Cleaner Prod. 181, 60–71 (2018)

    Article  Google Scholar 

  24. Farinelli, A., Boscolo, N., Zanotto, E., Pagello, E.: Advanced approaches for multi-robot coordination in logistic scenarios. Robot. Auton. Syst. 90, 34–44 (2017)

    Article  Google Scholar 

  25. Clearpath Robotics. https://www.clearpathrobotics.com. Accessed 29 Mar 2018

  26. SAGA Robotics. https://sagarobotics.com/. Accessed 29 Mar 2018

  27. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2149–2154 (2004)

    Google Scholar 

  28. Bochtis, D.D., Sørensen, C.G., Green, O.: A DSS for planning of soil-sensitive field operations. Decis. Support Syst. 53(1), 66–75 (2012)

    Article  Google Scholar 

  29. Moisiadis, V., Bechtsis, D., Menexes, G., Vlachos, D., Iakovou, E., Bochtis, D.: Intelligent autonomous vehicles in industrial environments. In: 6th ICMEN International Conferences, Thessaloniki, Greece, pp. 207–2012 (2017)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the project “Research Synergy to address major challenges in the nexus: energy-environment-agricultural production (Food, Water, Materials)” - NEXUS, funded by the Greek Secretariat for Research and Technology (GSRT) – Pr. No. MIS 5002496.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Bechtsis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bechtsis, D., Moisiadis, V., Tsolakis, N., Vlachos, D., Bochtis, D. (2019). Unmanned Ground Vehicles in Precision Farming Services: An Integrated Emulation Modelling Approach. In: Salampasis, M., Bournaris, T. (eds) Information and Communication Technologies in Modern Agricultural Development. HAICTA 2017. Communications in Computer and Information Science, vol 953. Springer, Cham. https://doi.org/10.1007/978-3-030-12998-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12998-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12997-2

  • Online ISBN: 978-3-030-12998-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics