Abstract
Register context-free grammars (RCFG) is an extension of context-free grammars to handle data values in a restricted way. This paper first introduces register type as a finite representation of the register contents and shows some properties of RCFG. Next, generalized RCFG (GRCFG) is defined by permitting an arbitrary relation on data values in the guard expression of a production rule. We extend register type to GRCFG and introduce two properties of GRCFG, the simulation property and the type oracle. We then show that \(\varepsilon \)-rule removal is possible and the emptiness and membership problems are EXPTIME solvable for GRCFG that satisfy these two properties.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We exclude the diagonal elements \(\{(i,i)\mid i\in [k]\}\) from the domain of a register type because the applicability of a rule does not depend on whether \(\theta (i)\bowtie \theta (i)\).
- 2.
For readability, we denote a register type as a Boolean formula on a register assignment \(\theta \). For example, \(\gamma _2(1,2)=\mathtt{tt}\) and \(\gamma _2(2,1)=\mathtt{ff}\) if we follow the notation defined in Sect. 4.2.
References
Benedikt, M., Ley, C., Puppis, G.: What you must remember when processing data words. In: 4th Alberto Mendelzon International Workshop on Foundations of Data Management (2010)
Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data trees and XML reasoning. J. ACM 56(3), 13:1–13:48 (2009). https://doi.org/10.1145/1516512.1516515
Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data words. ACM Trans. Comput. Log. 12(4), 27:1–27:26 (2011). https://doi.org/10.1145/1970398.1970403
Bojańczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets. Log. Methods Comput. Sci. 10(3) (2014). https://doi.org/10.2168/LMCS-10(3:4)2014
Bouyer, P.: A logical characterization of data languages. Inf. Process. Lett. 84(2), 75–85 (2002). https://doi.org/10.1016/S0020-0190(02)00229-6
Cheng, E.Y., Kaminski, M.: Context-free languages over infinite alphabets. Acta Inf. 35(3), 245–267 (1998). https://doi.org/10.1007/s002360050120
Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. ACM Trans. Comput. Log. 10(3), 16:1–16:30 (2009). https://doi.org/10.1145/1507244.1507246
Demri, S., Lazić, R., Nowak, D.: On the freeze quantifier in constraint LTL: decidability and complexity. Inf. Comput. 205(1), 2–24 (2007). https://doi.org/10.1016/j.ic.2006.08.003
Figueira, D., Hofman, P., Lasota, S.: Relating timed and register automata. Math. Struct. Comput. Sci. 26(6), 993–1021 (2016). https://doi.org/10.1017/S0960129514000322
Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2), 329–363 (1994). https://doi.org/10.1016/0304-3975(94)90242-9
Libkin, L., Martens, W., Vrgoč, D.: Querying graphs with data. J. ACM 63(2), 14:1–14:53 (2016). https://doi.org/10.1145/2850413
Libkin, L., Tan, T., Vrgoč, D.: Regular expressions for data words. J. Comput. Syst. Sci. 81(7), 1278–1297 (2015). https://doi.org/10.1016/j.jcss.2015.03.005
Libkin, L., Vrgoč, D.: Regular path queries on graphs with data. In: 15th International Conference on Database Theory (ICDT 2012), pp. 74–85 (2012). https://doi.org/10.1145/2274576.2274585
Milo, T., Suciu, D., Vianu, V.: Typechecking for XML transformers. In: 19th ACM Symposium on Principles of Database Systems (PODS 2000), pp. 11–22 (2000). https://doi.org/10.1145/335168.335171
Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite alphabets. ACM Trans. Comput. Log. 5(3), 403–435 (2004). https://doi.org/10.1145/1013560.1013562
Sakamoto, H., Ikeda, D.: Intractability of decision problems for finite-memory automata. Theor. Comput. Sci. 231(2), 297–308 (2000). https://doi.org/10.1016/S0304-3975(99)00105-X
Senda, R., Takata, Y., Seki, H.: Complexity results on register context-free grammars and register tree automata. In: Fischer, B., Uustalu, T. (eds.) ICTAC 2018. LNCS, vol. 11187, pp. 415–434. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02508-3_22
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Senda, R., Takata, Y., Seki, H. (2019). Generalized Register Context-Free Grammars. In: Martín-Vide, C., Okhotin, A., Shapira, D. (eds) Language and Automata Theory and Applications. LATA 2019. Lecture Notes in Computer Science(), vol 11417. Springer, Cham. https://doi.org/10.1007/978-3-030-13435-8_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-13435-8_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-13434-1
Online ISBN: 978-3-030-13435-8
eBook Packages: Computer ScienceComputer Science (R0)