Skip to main content

Syntactic View of Sigma-Tau Generation of Permutations

  • Conference paper
  • First Online:
Language and Automata Theory and Applications (LATA 2019)

Abstract

We give a syntactic view of the Sawada-Williams \((\sigma ,\tau )\)-generation of permutations. The corresponding sequence of \(\sigma \tau \)-operations, of length \(n!-1\) is shown to be highly compressible: it has \(\mathcal {O}(n^2\log n)\) bit description. Using this compact description we design fast algorithms for ranking and unranking permutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chan, T.M., Patrascu, M.: Counting inversions, offline orthogonal range counting, and related problems. In: Charikar, M. (ed.) Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, 17–19 January 2010, pp. 161–173. SIAM (2010). https://doi.org/10.1137/1.9781611973075.15

  2. Dietz, P.F.: Optimal algorithms for list indexing and subset rank. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1989. LNCS, vol. 382, pp. 39–46. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51542-9_5

    Chapter  MATH  Google Scholar 

  3. Ruskey, F., Williams, A.: An explicit universal cycle for the \((\text{n}-1)\)-permutations of an n-set. ACM Trans. Algorithms 6(3), 45:1–45:12 (2010). https://doi.org/10.1145/1798596.1798598

    Article  MathSciNet  MATH  Google Scholar 

  4. Rytter, W.: Grammar compression, LZ-encodings, and string algorithms with implicit input. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 15–27. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27836-8_5

    Chapter  MATH  Google Scholar 

  5. Sawada, J., Williams, A.: Solving the sigma-tau problem. http://socs.uoguelph.ca/~sawada/papers/sigmaTauCycle.pdf

  6. Sawada, J., Williams, A.: A Hamilton path for the sigma-tau problem. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, 7–10 January 2018, pp. 568–575 (2018). https://doi.org/10.1137/1.9781611975031.37

    Chapter  Google Scholar 

  7. Sawada, J., Williams, A., Wong, D.: A surprisingly simple de Bruijn sequence construction. Discret. Math. 339(1), 127–131 (2016). https://doi.org/10.1016/j.disc.2015.08.002

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiktor Zuba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rytter, W., Zuba, W. (2019). Syntactic View of Sigma-Tau Generation of Permutations. In: Martín-Vide, C., Okhotin, A., Shapira, D. (eds) Language and Automata Theory and Applications. LATA 2019. Lecture Notes in Computer Science(), vol 11417. Springer, Cham. https://doi.org/10.1007/978-3-030-13435-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13435-8_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13434-1

  • Online ISBN: 978-3-030-13435-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics