
Syntactic View of Sigma-Tau Generation

of Permutations

Wojciech Rytter and Wiktor Zuba

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw,
Warsaw, Poland

[rytter,w.zuba]@mimuw.edu.pl

Abstract

We give a syntactic view of the Sawada-Williams (σ, τ)-generation of
permutations. The corresponding sequence of στ -operations, of length
n!−1 is shown to be highly compressible: it has O(n2 logn) bit description.
Using this compact description we design fast algorithms for ranking and
unranking permutations.

1 Introduction

We consider permutations of the set {1, 2, ..., n}, called here n-permutations.
For an n-permutation π = (a1, ..., an) denote:

σ(π) = (a2, a3, ..., an, a1), τ(π) = (a2, a1, a3, ..., an).

In their classical book on combinatorial algorithms Nijenhuis and Wilf asked in
1975 if all n-permutations can be generated, each exactly once, using in each
iteration a single operation σ or τ . This difficult problem was open for more
than 40 years. Very recently Sawada and Williams presented an algorithmic
solution at the conference SODA’2018. In this paper we give new insights into
their algorithm by looking at the generation from syntactic point of view.

Usually in a generation of combinatorial objects of size n we have a starting
object and some set Σ of very local operations. Next object results by applying
an operation from Σ, the generation is efficient iff each local operation uses small
memory and time. Usually the sequence of generated objects is exponential
w.r.t. n. From a syntactic point of view the generation globally can be seen
as a very large word in the alphabet Σ describing the sequence of operations.
It is called the syntactic sequence of the generation. Its textual properties
can help to understand better the generation and to design efficient ranking
and unranking. Such syntactic approach was used for example by Ruskey and
Williams in generation of (n-1)-permutations of an n-set in [3].
Here we are interested whether the syntactic sequence is highly compressible. We
consider compression in terms of Straight-Line Programs (SLP, in short), which
represent large words by recurrences, see [4], using operations of concatenation.
We construct SLP with O(n2) recurrences, which has O(n2 log n) bit description.

The syntactic sequence for some generations is highly compressible and for
others is not. For example in case of reflected binary Gray code of rank n each

1

ar
X

iv
:1

90
3.

10
70

1v
1

 [
cs

.D
S]

 2
6

M
ar

 2
01

9

local operation is the position of the changed bit. Here Σ = {1, 2, ..., n} and
the syntactic sequence T (n) is described by the short SLP of only O(n) size:
T1 = 1; T (k) = T (k − 1), k, T (k − 1) for 2 ≤ k ≤ n.

In case of de Bruijn words of length n each operation corresponds to a single
letter appended at the end. However in this case the syntactic sequence is not
highly compressible though the sequence can be iteratively computed in a very
simple way, see [7]. In this paper we consider the syntactic sequence SEQn
(over alphabet Σ = {σ, τ}) of Sawada-Williams στ -generation of permutations
presented in [6, 5]. An SLP of size O(n2) describing SEQn is given in this paper.
The στ -generation of n-permutations by Sawada and Williams can be seen as a
Hamiltonian path SW(n) in the Cayley graph Gn. The nodes of this graph are
permutations and the edges correspond to operations σ and τ .
We assume that (simple) arithmetic operations used in the paper are computable
in constant time.

Our results. We show:

1. SEQn can be represented by the straight-line program of O(n2) size:

• W0 = σ, Wk = τ ·
∏n−2
i=1 σiW∆(k,i) γn−2−i

for 1 ≤ k < n− 3;

• Vn = γn−3 ·
∏n−3
i=2 σiW∆(n−3,i) γn−2−i · σn−1;

• SEQn = γn−2
1 σ2 (Vn τ)n−2 Vn.

where ∆(k, i) = min(k − 1, n− 2− i) and γk = σkτ .

2. Ranking: using compact description of SEQn the number of steps (the
rank of the permutation) needed to obtain a given permutation from a
starting one can be computed in time O(n

√
log n) using inversion-vectors

of permutations.

3. Unranking: again using SEQn the t-th permutation generated by SEQn
can be computed in O(n logn

log logn) time.

2 Preliminaries

Denote by cycle(π) all permutations cyclically equivalent to π. Sawada and
Williams introduced an ingenious concept of a seed: a shortened permutation
representing a group of (n− 1) cycles. Informally it represents a set of permuta-
tions which are cyclically equivalent modulo one fixed element, which can appear
in any place.

Let ⊕ denote a modified addition modulo n− 1, where n− 1⊕ 1 = 1. It gives a
cyclic order of elements {1, ..., n− 1}. We write a	 1 = b iff b⊕ 1 = a.
Formally a seed is a (n − 1) tuple of distinct elements of {1, 2, ..., n} of the
form ψ = (a1, a2, ..., an−1), such that a1 = n and (a1, a2 ⊕ 1, a2, ..., an−1) is a
permutation. The element x = mis(ψ) = a2 ⊕ 1 is called a missing element.

2

Denote by perms(ψ) the set of all n-permutations resulting by making a
single insertion of x into any position in ψ, and making cyclic shifts. The sets
perms(ψ) are called packages, the seed ψ is the identifier of its package perms(ψ).
One of the main tricks in the Sawada-Williams construction is the requirement
that the missing element equals a2 ⊕ 1. In particular this implies the following:

Observation 1. A given n-permutation belongs to one or two packages. We
can find identifiers of these packages in linear time.

The algorithm of Sawada and Williams starts with a construction of a large
and a small cycle (covering together the whole graph). The graph consisting
of these two cycle is denote here by Rn. The small cycle is very simple. Once
Rn is constructed the Hamiltonian path is very easy: In each cycle one τ -edge
is removed (the cycles become simple paths), then the cycles are connected by
adding one edge to Rn.

2.1 Structure of seed graphs

First we introduce seed-graphs. Define the seed-graph of the seed ψ, denoted
here by SeedGraph(ψ) (denoted by Ham(ψ) in [6]), as the graph consisting of
edges implied by the seed ψ. The set of nodes consists of perms(ψ), the set of
edges consists of almost all σ-edges between these nodes (except the edges of the
form (∗, x, ∗, ..., ∗)→ (x, ∗, ..., ∗, ∗)), but the set of τ -edges consists only of the
edges of the form (∗, x, ∗, ..., ∗)→ (x, ∗, ∗, ..., ∗), where x is the missing element.
see Figure 1.

y

y

y

3241

1234

= 2413

= 2341

=2134

4213

t

t

t(1)

(2)

(3)

y =
~

s

s

s

s

ss

s

s

s

Figure 1: Structure of SeedGraph(ψ), where ψ = (4, 1, 3), mis(ψ) = 2.
For a seed ψ = (a1, a2, ..., an−1) with mis(ψ) = x, let

ψ(n−1) = (x, a2, ..., an−1, a1), ψ̃ = (a1, x, a2, a3, ..., an−1).

For 1 ≤ i ≤ n−1 denote ψ(i) = γin−1(ψ(n−1)). In other words ψ(i), for n > i > 0,
is the word ψ right-shifted by i− 1 and with x added at the beginning. Observe
that: γn−1(ψ(i)) = ψ(i+1) for 0 < i < n− 1.

Example 2. For ψ = (5, 3, 2, 1) we have ψ̃ = (5, 4, 3, 2, 1), ψ(1) = (4, 5, 3, 2, 1),
ψ(2) = (4, 1, 5, 3, 2), ψ(3) = (4, 2, 1, 5, 3), ψ(4) = (4, 3, 2, 1, 5).

Each perms(ψ) can be sequenced easily as a simple cycle in Gn. Two seeds φ, ψ
are called neighbors iff perms(φ)∩ perms(ψ) 6= ∅. The permutations of type ψ(i)

play crucial role as connecting points between packages of neighboring seeds.

Observation 3. Two distinct seeds φ, ψ are neighbors iff mis(φ) = mis(ψ)⊕
1 or mis(ψ) = mis(φ)⊕ 1, and after removing both mis(ψ), mis(φ) from φ and
ψ the sequences φ, ψ become identical.

3

2.2 The pseudo-tree STn of seeds

For a seed ψ = a1a2...an−1 denote by height(ψ) the maximal length k of a
prefix of a2, a3, ..., an−1 such that ai = ai+1 ⊕ 1 for i = 2, 3, ..., k. For example
height(94326781) = 3 (here the missing number is 5). For each two neighbors
we distinguish one of them as a parent of the second one and obtain a tree-
like structure called a pseudo-tree denoted by STn. If height(ψ) > 1 and

mis(ψ) = mis(β)⊕ 1 we write parent(β) = ψ. Additionally if σi(ψ(i)) = β̃ we
write son(ψ, i) = β and we say that β is the i-th son of ψ.

The function parent gives the tree-like graph of the set of seeds, it is a cycle
with hanging subtrees rooted at nodes of this cycle. The set of seeds on this
cycle is denoted by Hubn. For example
Hub6 = {(6, 5, 4, 3, 2), (6, 4, 3, 2, 1), (6, 3, 2, 1, 5), (6, 2, 1, 5, 4), (6, 1, 5, 4, 3)}.

Due to Lemma 5 we have:

Observation 4. If ψ /∈ Hubn then all τ -edges of SeedGraph(ψ) are in PATH(n).

For ψ /∈ Hubn let Tree(ψ) be the subtree of STn rooted at ψ including ψ and
nodes from which ψ is reachable by parent-links.

2.3 A version of Sawada-Williams algorithm

We say that an edge u → v conflicts with u′ → v′ iff u = u′, v 6= v′. Non-
disjoint packages φ, ψ can be joined into a simple cycle by removing two σ-edges
conflicting with τ -edges.

By a union of graphs we mean set-theoretic union of nodes and set-theoretic
union of all edges in these graphs.
Denote by Rn the graph

⋃
ψ SeedGraph(ψ) in which we removed all σ-edges

conflicting with τ -edges. The τ -edges have priority here. A version of the
construction of a Hamiltonian path by Sawada-Williams, denoted by SW(n), can
be written informally as:

Algorithm Compute PATH(n);

P :=
⋃
ψ∈SEEDS(n) SeedGraph(ψ)

remove from P all σ-edges conflicting with τ -edges in P

π := (n, n− 1, ..., 1); add to P the edge π → σ(π)

remove edges π → τ(π), τ(σ(π))→ σ(π)

return P {P is now a Hamiltonian path τ(π)→∗ τ(σ(π)) }

Lemma 5. PATH(n) = SW(n).

Proof. To prove that the paths are the same it is enough to prove that both
begin in the same place and that τ edges are used from exactly the same vertices.
The particular Hamiltonian path in [6] is described in terms of a function next,
which for any vertex assigns a next one on the path (by returning σ or τ). The

4

function next for a given permutation π = (p1, p2, ..., pn) produces a τ -edge
when p2 = r⊕ 1 (unless π = (n, n− 1, ..., 1) or p2 = n), where r is cyclically first
element after n jumping over p2 (equal to p3 if n = p1).

The condition of being equal to r ⊕ 1 in permutation π is exactly the same
condition as being the missing element of a seed ψ such that π ∈ perms(ψ) (for
one of two seeds if r = p3 = p2 	 1). For a permutation π ∈ perms(ψ) such that
height(ψ) < n−3 the missing element of ψ happens to be the first element of the

permutation if and only if π ∈
n−1⋃
i=1

{ψ(i)}.
n−1⋃
i=1

{ψ(i)} is a set of those permutations

from perms(ψ) ∩ bunch(ψ), whose ingoing edge in PATH(n) is a τ -edge. As
τ -edges exchange the first two elements hence both approaches describe the same
sets of edges (unless ψ belongs to the Hubn). If the permutation belongs to the
package perms(ψ) for a hub seed ψ, the only difference from the previous case
is that it can belong to the first part of the path of length 2n− 2 (including the
special permutation (n, n− 1, ..., 1)).

The first 2n − 2 permutations (the ones that are cyclically equivalent to
(n − 1, n − 2, ..., 1) after removing element n which appears on first or second
position) generate the same pattern in both constructions (alternation of σ and
τ edges). All other permutations from those packages follow the same rules as
the ones from packages corresponding to seeds with height ≤ n − 4, with the
difference that permutations ψ(i) are not explicitly named (and that ψ(1) play a
different role being the ones from the beginning of the path). In this way we
have shown that SW (n) = PATH(n).

3 Compact representation of bunches of permu-
tations

Our aim is to give a syntactic version of PATH(n): the sequence SEQn of στ -
labels of PATH(n) represented compactly. We have to investigate more carefully
the structure of seed-graphs and their interconnections. We introduce the basic
components of PATH(n): groups of permutations corresponding to a subtree of
seeds which are not on the cycle in the pseudo-tree. For ψ /∈ Hubn define

bunch(ψ) =
⋃

β∈Tree(ψ)

perms(β) − cycle(ψ̃) ∪ {ψ̃, ψ(n−1)}.

In other words cycle(ψ̃) connects bunch(ψ) with the ”outside world”, only

through ψ̃, ψ(n−1).
We start with properties of local interconnection between two packages.

Lemma 6. Two seeds φ 6= ψ are neighbors iff one of them is the parent of
another one. If φ = parent(ψ) then perms(φ) ∩ perms(ψ) is the σ-cycle con-

taining both ψ̃ and φ(i), for some i, and has a structure as shown in Figure 2(A),
where ψ is the i-th son of φ. If height(φ) = k < n− 3 then height(ψ) = ∆(k, i).
Furthermore son(φ, i) exists for all i ∈ {1, ..., n− 3}.

Proof. Assume that π = (p1, p2, ..., pn) ∈ perms(φ). Without loss of generality
we can assume that p1 = n (as cyclically equivalent permutations belong to the
same packages). After removing any element from π the first element after n is

5

either p2 or p3 in both cases we obtain a valid seed if and only if the removed
element is greater by one than that element following n. When removing element
p2 ⊕ 1 we always receive a seed which package contains π and if we remove p2

this is only the case if p2 = p3 ⊕ 1. It means that if π ∈ perms(φ) ∩ perms(ψ)
then one of those seeds (denote it by φ) is equal to (p1, p2, ..., pn) (without an
element pj = p2⊕ 1) and the other (denote it by ψ) to (p1, p3, ..., pn). Removing
both elements from π gives us the sequence obtained from φ and ψ after the
appropriate removals.

Permutations ψ̃ = π and φ(n−j+1) = (pj , pj+1, ..., pn, p1, ..., pj−1) are cycli-
cally equivalent. If height(φ) = k < n − 3 and j > k + 1 then elements
p2, p3, ..., pk+1 form a sequence decreasing by one: a sequence with a property
pi = pi+1 ⊕ 1 and pk+1 6= pk+2 ⊕ 1 (pk+1 6= pk+3 ⊕ 1 if j = k + 2).

We obtain seed ψ by removing the element p2 from φ and inserting the
element pj = p2⊕1 (between elements pj−1 and pj+1). The removal shortens the
decreasing sequence by 1 and the insertion can neither shorten it (as the element
lands outside of the sequence) nor extend it (even if j = k+2 as for pj = pk+1	1
the pair (k, j) would have to be equal to (n− 2, n) which is impossible outside
of Hubn). Hence

height(ψ) = k − 1 = min(k − 1, j − 3) = ∆(k, n− j + 1) = ∆(k, i)

If j ≤ k + 1 then the decreasing sequence is formed by elements p2, p3, ..., pk+2

(omitting element pj). The removal of p2 decreases the length of the sequence
by 1 and insertion of pj cut it just before that element. We have

height(ψ) = j − 3 = min(k − 1, j − 3) = ∆(k, n− j + 1) = ∆(k, i)

We can remove p2 from the seed φ and insert p2 ⊕ 1 in any of the n− 3 places
after p3 obtaining a valid seed which is a son of φ.

Hence we know that packages of two seeds intersects if and only if they are
in a parent-son relation, and that every seed of height greater than 1 has exactly
n− 3 seed-sons. We can also easily check which son of parent(ψ) the seed ψ is
or compute son(ψ, i) for any i ∈ {1, ..., n− 3}.

f

y s
(n-1)

s
n-2-i

s i

(i) s

y

s
i

(i)

y

f

y
(n-1)

s
n-2-i

t

t

t

t

(A)
(B)

~
~

Figure 2: (A) The anatomy of perms(φ)∩ perms(ψ): the graph SeedGraph(ψ)∩
SeedGraph(φ). (B) A part of the Hamiltonian path PATH(n) after removing two
conflicting σ-edges, we have that ψ is the i-th son of φ.

For k < n − 3 and a seed ψ of height k we define Wk as the sequence of
labels of a sub-path in PATH(n) starting in ψ̃ and ending in ψ(n−1). In other
words it is a στ -sequence generating all n-permutations (each exactly once) of
bunch(ψ).

6

Observation 7. By Lemma 6 every seed ψ such that 1 < height(ψ) < n − 3
has exactly n − 3 sons whose heights depend only on height of ψ. Hence (by
induction on heights) all trees Tree(ψ) are isomorphic for seeds ψ of the same
height. Consequently the definition of Wk is justified as it depends only on the
height of ψ.

For a permutation π and a sequence α of operations σ, τ denote by GEN(π, α)
the set of all permutations generated from π by following α, including π.
The word Wk satisfies:

GEN(ψ̃, Wk) = bunch(ψ) and Wk(ψ̃) = ψ(n−1).
In this section we give compact representation of Wk

For example if height(ψ) = 1 then W1 is a traversal of perms(ψ) except n− 2
cyclically equivalent permutations, common to perms(ψ) and perms(φ), where
φ = parent(ψ).

781965432 278196543

654327819965432781

954362781

t

t

t

t

t

t
t

t t

s

s

s
4

2

6

1

8
W

W

W

W

3

3

3 2

1

s
3

W
3

695432781

169543278

619543278

861954327

681954327

768195432

954327816

543278169

954327861

543278619

954327681

543276819

s

s

s

s

s

s

1

6

2

5

3

4

564327819

643278195

463278195

632781954

362781954

627819543

546327819

954632781

543627819
s

s

s

5

W

267819543678195432

543267819
954326781

t
s

s4 3
4

Figure 3: The structure of bunch(ψ) for the seed ψ = 95432781. We have
parent(ψ) = φ, where φ = 96543281. The connecting points of ψ with its parent

are ψ̃ and ψ(n−1), in other words bunch(ψ) ∩ perms(φ) = {ψ̃, ψ(n−1)}. The

sequence W4 starts in ψ̃, visits all permutations in bunch(ψ) and ends in ψ(n−1).
We have: W4 = τ · σ1W3γ6 ·σ2W3γ5 ·σ3W3γ4 ·σ4W3γ3 ·σ5W2γ2 ·σ6W1γ1 · γ8

Recall that we denote γk = σkτ

Theorem 8. For 1 ≤ k < n− 3 we have the following recurrences:

W0 = σ, Wk = τ ·
∏n−2
i=1 σiW∆(k,i) γn−2−i

7

Proof. Assume ψ /∈ Hubn is of height k, then by Lemma 6 the first, from left to
right, n− k− 1 children of ψ in the subtree Tree(ψ) are of height k− 1 and the

next k − 2 children are of heights k − 2, k − 3, ..., 1. The representative β̃i of the
i-th son βi of ψ equals σi(ψ(i)) (see Figures 3 and 4).

t

t

t
t

t t

t
t

s

s

s

s

s

s s
s

s

s s
3 4

6

2

5

3

4

4 3

6

W

W

W

W

W

3

3

3

3

1

y
(8)

(1)
y y

(2)
y

(3)
y

(4)
y

(6)
y

s
1

t

t

s

s

s

5

2

1

8

W

2

(5)
y

(7)
y

~

Figure 4: Schematic view of structure from Figure 3.

4 Compact representation of the whole genera-
tion

We have the following fact:

Observation 9. Assume two seeds ψ, β satisfy: height(ψ) = k > 1 and

σi(ψ(i)) = β̃. Then if i = 1 and ψ ∈ Hubn then height(β) = height(ψ).

Theorem 10. The whole στ -sequence SEQn starting at τ(n, n−1, ..., 1), ending
at στ(n, n−1, ..., 1), and generating all n-permutations, has the following compact
representation of O(n2) size (together with recurrences for Wk):

SEQn = γn−2
1 σ2 (Vn τ)n−2 Vn, where

Vn = γn−3 ·
∏n−3
i=2 σiW∆(n−3,i) γn−2−i · σn−1.

Proof. For every non-hub seed ψ we had that GEN(ψ̃, Wk) = bunch(ψ), where
k = height(ψ). The only difference for a hub seed φ is that son(φ, 1) cannot
be considered as part of a tree rooted at φ (with already defined parent-links),
since son(φ, 1) ∈ Hubn and this would lead to a cycle (son(φ, 1) is reachable via
parent-links from φ). Thus to prevent this problem we define Vn as Wn−3 with
the part corresponding to the first son removed (leaving only the γn−2−1 part),

8

and also delete the last symbol τ , as it does not appear at the end of the path (it
corresponds to one of the τ -edges removed when joining two cycles into one path).
Now Seqn consists of n− 1 such segments Vn (corresponding to n− 1 hub seeds)
joined by τ -edges (they are linked in the same way as if the previous Vn part
was a son of the next one). Additionally it starts with γn−1

1 -path representing
the small path with the last τ -edge replaced by a σ-edge.

W
1W

1

W
1

W
1

W
1

W
2

W
2

W
2

W
2

W
2

s

s

s

s

s

t

t

t

t

t

t

t

t

t t

t

t

t
t

t
tt

t

t t

t

t

t

s
5

s
5

s
5

s
5

s

s
s

s

s s
3

s
3

s
3

s
3 s

3

s
2

s
2

s
2

s
2

s
2

s
2

s
2

s
2

s
2

s
2

654321

s
3

s
3

s
3

s
3

s
3

564321

453216

t

t

Figure 5: The compacted structure of SEQ6 of length 720. It differs from the
structure of R6 by adding one σ-edge from 654321 and removing two (dotted) τ -
edges to have Hamiltonian path. We have: SEQ6 = (στ)4σ2 (V6τ)4 V6, where
V6 = σ3τ σ2W2σ

2τ σW1σ
3τ σ5. The structure is the union of graphs of 5

seeds in Hub6 with hanging bunches. The starting path consists of permutations
from 564321 to 654321.

5 Ranking

We need some preprocessing to access later some values in constant time.

Observation 11. All the values |Wk| and
k∑
i=0

(|Wi|+ n− 1) for k ∈ {0..n− 4}

can be computed in O(n) total time and accessed in O(1) time afterwards.

The ranks of representatives of hub seeds are easy to compute. For example
for n = 6 we have (see Figure 5): rank(643215) = 1, rank(632154) = 3,
rank(621543) = 5, rank(615432) = 7, rank(654321) = 9.

9

Lemma 12. For a given permutation π we can compute in time O(n)

(a) rank(π)− rank(ψ̃) if π ∈ perms(ψ),
(b) rank(π) if π ∈ perms(ψ) for some ψ ∈ Hubn.

Proof.
By the starting path we mean the sequence on the first 2n− 2 permutations of
PATH(n), see Figure 5.

(a) Given a permutation π ∈ perms(ψ) we define ρ = (n, r2, ..., rn) as permu-
tation cyclically equivalent to π and starting with n, and let j be the position
such that rj = r2 ⊕ 1. If ψ = (n, r3, ..., rn), then ρ = ψ̃

Now we distinguish two cases depending on the position l of n in π.

Case 1: if l ≤ n− j + 2, then rank(π) = rank(ρ)− l + 1

(it appears in the σn−j+1 part of bunch(parent(ψ))),

Case 2: otherwise rank(π) = |Wheight(ψ)|+ (n− 1)− l + 1

(it appears in the γj−3 part).

If ψ = (n, r2, ..., rj−1, rj+1, ..., rn), then

rank(ρ) = rank(ψ̃) + SUM(height(ψ), n− j + 1)

Using similar arguments as before we have that:
rank(π) = rank(ρ)− l + 1 if l ≤ n− j + 2 and
rank(π) = rank(ρ) + |W∆(height(ψ),n−j+1)|+ (n− 1)− l + 1 otherwise.

(b) If the permutation π after removing n is cyclically equivalent to (n− 1, n−
2, ..., 1) and n appears on the first position (π belongs to the starting path) then
rank(π) = 2 · (n − p2 − 1) − 1, and if it appears on the second position then
rank(π) = 2 · (n− p1 − 1), where p1, p2 are the first two positions of π.
Otherwise we define ρ, j and l like in case (a) and ψ = (n, r2, ..., rj−1, rj+1, ..., rn).
We know that π ∈ perms(ψ), and want to compute rank(π) minus the rank of
the first permutation of ψ which appears in PATH(n) with rank greater than
2n− 3. That permutation is equal to

µ = (r2, ..., rj−1, rj+1, ..., rn, r2 ⊕ 1, n)

(equal to σ2(ψ1) if ψ(1) was defined for hub seeds in the same way as for the
other ones), and has rank equal to

(2n− 2) + |Vnτ | · (r2mod(n− 1)) = 2n− 2 + (r2mod(n− 1)) · (n(n− 2)!− 2)

If j = n then rank(ψ) = rank(µ) + n− l else if l ≤ n− j + 2 then

rank(ρ) = rank(µ)+SUM(n−3, n−j+1)−|Wn−4|−2, rank(π) = rank(ρ)−l+1

Otherwise we have

rank(π) = rank(ρ) + |Wj−3|+ (n− 1)− l + 1.

Those two algorithms lets us rank permutations in basic cases, and allows
us to reduce the main problem to a simpler one (ranking the representatives of
seeds).

10

Hence we concentrate on ranking permutations of type ψ̃ (representatives of

seeds). We slightly abuse notation and for a seed ψ define rank(ψ) = rank(ψ̃).
For a non-hub seed ψ denote by anchor(ψ) the highest non-hub ancestor

φ of ψ and let hub(ψ) = parent(anchor(ψ)). Observe that the anchor φ is
the first contacting seed with the hub, it is the first ancestor of ψ such that
perms(φ) ∩ perms(β) 6= ∅ for some β ∈ Hubn, in fact for β = hub(ψ).

rank(ψ)− rank(anchor(ψ)) for a non-hub seed ψ, can be treated as its distance
from Hubn. It happens that computing the rank of the anchor is much easier,
since we have to deal only with the hub seeds. The bottleneck in ranking is
computation of the distance of a seed representative from Hubn. Define:

SUM(k, j) = |τ ·
∏j−1
i=1 σiW∆(k,i) γn−2−i| + j.

Denote also by ord(ψ) the position of mis(ψ) + 1 in ψ counting from the end of
sequence ψ. For example for ψ = (10 6 5 9 8 4 3 1 2) we have ord(ψ) = 5, since
mis(ψ) = 7 and 8 is on the 5-th position from the right.

Observation 13. If φ = parent(ψ) /∈ Hubn and ψ is the i-th son of φ then
rank(ψ)− rank(φ) = SUM(height(φ), i).

Example 14. Let ψ = 94326781, then parent(ψ) = φ = 95432781. The path

from φ̃ = 965432781 to ψ̃ = 954326781 is

τ σ1W3σ
6τ σ2W3σ

5τ σ3W3σ
4τ σ4,

see Figure 3. Its length equals SUM(4, 4), we have: height(φ) = 4, ord(ψ) = 4.

Observation 15. ord(ψ) = i iff ψ is the i-th son of parent(ψ).

For the parent-sequence ψ0 = ψ,ψ1, ..., ψm = anchor(ψi) denote

route(ψ) = (ord(ψ0), ord(ψ1), ..., ord(ψm)).

For a seed ψ = a1a2...an−1 define the decreasing sequence of ψ, denoted by
dec seq(ψ), as the maximal sequence ai0ai1 ...aim , where 2 = i0 < i1 < i2 < ... <
im such that ij−1 = ij ⊕ 1 for 0 < j ≤ m. Denote level(ψ) = n−m− 3. The
length of the parent-sequence ψ = ψ0, ψ1, ψ2, ..., ψr = anchor(ψ) from ψ to its
anchor is r = level(ψ)− 1.

Example 16. We have: dec seq(96154238) = (6, 5, 4, 3). Hence the path from
ψ = (96154238) to anchor(ψ) = (98765423) is of length (9− 3− 3)− 1 = 2. This
path equals:

ψ0 → ψ1 → ψ2 = 96154238→ 97615423→ 98765423.

We have: ord(ψ0) = 1, ord(ψ1) = 5, ord(ψ2) = 2, route(96154238) = (1, 5, 2).

The key point is that we do not need to deal with the whole parent-sequence,
including explicitly seeds on the path, which is of quadratic size (in worst-case)
but it is sufficient to deal with the sequence of orders of sons, which is an implicit
representation of this path of only linear size

Lemma 17. For a non-hub seed ψ we can compute route(ψ) and anchor(ψ) in
O(n
√

log n) time.

Proof. We know the length of the parent sequence from ψ to its anchor, since
we know level(ψ). Now we use the following auxiliary problem

11

Inversion-Vector problem:
for a seed ψ compute for each element x the number RightSm[x]
of elements smaller than x which are to the right of x in ψ.

Assume ψ = (a1, a2, ..., an−1). We introduce a new linear order

a2 ≺ a2 	 1 ≺ a2 	 2 ≺ ... ≺ a2 	 (n− 2).

Then we compute together the numbers RightSm[z] w.r.t. linear order ≺ for
each element z in ψ.

Now ord(ψi) is computed separately for each i in the following way:

ord(ψi) := RightSm[xi + 1] + 1, where xi = mis(ψi)

The Inversion-Vector problem can be computed in O(n
√

log n) time, see [1].
Consequently the whole computation of numbers ord(ψi) is of the same asymp-
totic complexity. We know that hub(ψ) = (n, b, b 	 1, ..., b 	 (n − 3)), where
b = a2 ⊕ level(ψ) and we know also which son of hub(ψ) is anchor(ψ). This
knowledge allows to compute anchor(ψ) within required complexity. This com-
pletes the proof.

Corollary 18. For a non-hub seed ψ the value rank(ψ)− rank(anchor(ψ)) can
be computed in O(n

√
log n) time.

Proof. Let the parent-sequence from ψ to its anchor be
ψ = ψ0, ψ1, ψ2, ..., ψr = anchor(ψ), where r = level(ψ)− 1.

Then rank(ψi)− rank(ψi+1) = SUM(height(ψi+1), ord(ψi)), and

height(ψi) = ∆(height(ψi+1), ord(ψi)), which allows us to compute in O(n)
time:

rank(ψ)− rank(anchor(ψ)) =
∑0
i=m−1 (rank(ψi)− rank(ψi+1))

Now the thesis is a consequence of Observation 11, Observation 13 and
Lemma 17. This completes the proof.

Example 19. (Continuation of Example 16) For ψ from Example 16 we have:

rank(ψ)− rank(anchor(ψ)) = SUM(5, 5) + SUM(2, 1)

The following result follows directly from Corollary 18, Lemma 12 and Observa-
tion 11.

Theorem 20. [Ranking] For a given permutation π we can compute the rank
of π in SEQn in time O(n

√
log n)

6 Unranking

Denote by Perm(t) the t-th permutation in SEQn, and for t < |bunch(ψ)|
let Perm(ψ, t) = Perm(t + rank(ψ̃)) (it is the t-th permutation in bunch(ψ),
counting from the beginning of this bunch). The following case is an easy one.

Lemma 21. If we know a seed ψ together with its rank, such that
Perm(t) ∈ perms(ψ), then we can recover Perm(t) in linear time.

12

Proof.
Let ψ = (n, a2, ..., an−1), and k = height(ψ). In linear time we find j such that
SUM(k, j)− j ≤ t < SUM(k, j + 1)− j − 1.
If SUM(k, j) < t < SUM(k, j) + |W∆(k,j)|, then Perm(ψ, t) does not belong to
perms(ψ) (it belongs to bunch(son(ψ, j))).
If l = SUM(k, j) − t ≥ 0, then Perm(ψ, t) is equal to (n, a2, ..., an−j , a2 ⊕
1, an−j+1) rotated by l to the right, and if l = t − SUM(k, j) + |W∆(k,j)| ≥ 0,
then it is the same permutation rotated by l + 1 to the left.

In this way we reduced the problem of unranking permutation outside of
Hubn to finding a package containing the permutation.

We say that a permutation π is a hub-permutation if π ∈ perms(ψ) for some
ψ ∈ Hubn.

Lemma 22. We can test in O(n) time if Perm(t) is a hub-permutation.
(a)If ”yes” then we can recover Perm(t) in O(n) time.
(b) Otherwise we can find in O(n) time an anchor-seed ψ together with rank(ψ)
such that Perm(t) ∈ bunch(ψ).

Proof.

If t < 2n − 2 then Perm(t) is equal to (n − 1, ..., 1) rotated to the left by
d t2e, with n inserted on first position if x is odd, and on the second if it is even.
Otherwise let t− (2n− 2) = t1 · |Vnτ |+ t2 (we use integer division), and let

ψ = (n, t1, t1 	 1, ..., t1 	 (n− 3))

(with t1 substituted by n− 1 if equal to 0). Perm(t) belongs to perms(ψ), or to
bunch(φ), where parent(φ) = ψ.

If t2 < n− 2 then Perm(t) equals to (n, t1, t1 	 1, ..., t1 	 (n− 2)) rotated to
the left by t2 + 1.

In the other case in linear time we find j such that

SUM(n−3, j)−j ≤ t2+(1+|Wn−4|+n−1)−(n−2) < SUM(n−3, j+1)−j−1,

and l = t2 + |Wn−4|+ 2− SUM(n− 3, j), φ = son(ψ, j)

If l ≤ 0 then Perm(t) is equal to φ̃ rotated to right by −l, else if l ≥ |W∆(n−3,j)|,
then Perm(t) is equal to φ̃ rotated to the left by l− |W∆(n−3,j)|+ 1. Otherwise
Perm(t) = Perm(φ, l), and it is not a hub-permutation.

By using this algorithm we either already succeed in finding the right permu-
tation, or restrict ourselves to a limited regular part of PATH(n).

For a sequence b = (b1, b2, ..., bm) of positive integers denote

MaxFrac(b) = maxi
bi+1

bi
, MinFrac(b) = mini

bi+1

bi
.

The sequence b is called here D(m)–stably increasing iff

MinFrac(b) ≥ 2, and MaxFrac(b) ≤ D(m).

Lemma 23.
(a) Assume we have a D(m)–stably increasing sequence b of length O(m). Then
after linear preprocessing we can locate any integer t in the sequence b in

13

O(log logD(m)) time.

(b) The sequence b = (b0, b1, ..., bn−5), where bk =
∑k
i=0(|Wi| + n − 1) is

n–stably increasing.

Proof.
(a) Denote B = bm

b1
, δ = m

√
B, Min = MinFrac(b),Max = MaxFrac(b), and

let d be a sequence such that d[i] = max{j : bj ≥ b1 · δi}.
It can be computed in linear time by scanning the sequence b from left to

right and reporting whenever element exceeds next power of δ.
Thanks to the fact that sequence b is D(m)–stably increasing the maximal

difference between consecutive values of a sequence d is bounded by logMin(δ) ≤
logMin(Max) ≤ log2(D(m)).

When locating x in the sequence b we can compute the value

y = blogδ

(
x

b1

)
c = bm · (log2 x− log2 b1)

log2B
c

It now suffices to binary scan the part of sequence b between positions d[y] and
d[y + 1], which has a length bounded by log2(D(m)).

(b) For any k ∈ {1, ..., n−5} the value of bk =
∑k−1
i=0 (n−1+ |Wi|)+n−1+ |Wk|

equals

2 ·
k−1∑
i=0

(n− 1 + |Wi|) + (n− k − 2) · (|Wk−1|+ n− 1) + n

> 2 ·
k−1∑
i=0

(n− 1 + |Wi|) = 2 · bk−1

We have:
bk
bk−1

= 2 +
n+ (n− k − 2) · (|Wk−1|+ n− 1)∑k−1

i=0 (n− 1 + |Wi|)

< 2 +
n+ (n− k − 2) · (|Wk−1|+ n− 1)

(n− 1 + |Wk−1|)

= n− k +
n

(|Wk−1|+ n− 1)
≤ n− k + 1 ≤ n

Combining those two parts of the lemma allows us to locate values in the
sequence bk =

∑k
i=0(n− 1 + |Wi|) in O(log log n) time after linear preprocessing

dependent only on the value of n.

Lemma 24. After linear preprocessing if we are given a height of a non-hub
seed ψ, and a number t ≤ |bunch(ψ)| we can find the number j and height(β)
of the seed-son β of ψ such that Perm(ψ, t) ∈ bunch(β) in O(log log n) time if
Perm(ψ, t) /∈ perms(ψ).

Proof. Let k = height(ψ). We need j such that SUM(k, j)−j ≤ t < SUM(k, j+
1)− (j + 1). For j ≤ n− k we have SUM(k, j)− j = (j − 1) · (|Wk−1|+ n− 1),
hence if t < SUM(k, n−k)−n+k the simple division by |Wk−1|+n− 1 suffices
to find the appropriate j. Otherwise we look for j such that

|Wk| −SUM(k, j+ 1) + j+ 1 < s ≤ |Wk| −SUM(k, j) + j, where s = |Wk| − t.

14

Let bi = |Wk| − SUM(k, n− 2− i) + n− 2− i = (
∑i
j=0 |Wj |+ n− 1).

By Lemma 23(b) (b0, ..., bk−2) is n–stably increasing (it is a prefix of (b0, ..., bn−5)
for which we made the linear preprocessing). Hence by Lemma 23(a) we can
find the required j in O(log log n) time.
Moreover if SUM(k, j) < t < SUM(k, j) + |W∆(k,j)|, then Perm(ψ, t) =
Perm(β, t − SUM(k, j)), where β = son(ψ, j) has height ∆(k, j). Otherwise
Perm(ψ, t) ∈ perms(ψ).

Theorem 25. [Unranking] For a given number t we can compute the t-th
permutation in Sawada-Williams generation in O(n logn

log logn).

Proof. From Lemma 22 we either obtain the required permutation (if it is a
hub-permutation) or obtain its anchor-seed φ and rank(φ). In the second case we

know that Perm(t) ∈ bunch(φ) and it equals Perm(φ, t− rank(φ̃)). Now after
the linear preprocessing we apply Lemma 24 exhaustively to obtain route(ψ) for
a seed ψ such that Perm(t) ∈ perms(ψ). However we do not know ψ and have
to compute it.

Claim 26. If we know anchor(ψ) and route(ψ) then ψ can be computed in
O(n logn

log logn) time.

Proof. We can compute the second element a2 of ψ as a′2 	m and dec seq(ψ)
as (a2, a2 	 1, ..., a2 	 (n−m− 3)) where a′2 is the second element of anchor(ψ),
and m = |route(ψ)| − 1. Then we use the order:

a2 ≺ a2 	 1 ≺ a2 	 2 ≺ ... ≺ a2 	 (n− 2).

We produce a linked list initialized with dec seq(ψ). For i ∈ {0, ...,m− 1} we
want to insert a2 ⊕ (m + 1 − i) after ord(ψm−1) position from the end of the
current list (all the smaller elements are already in the list and we know, that
after a2 ⊕ (m+ 1− i) there are ord(ψm−1)− 1 such elements). ψ is composed of
n and consecutive elements of the final list. The data structure from [2] allows
us to achieve that in O(n logn

log logn) time.

Finally we use this claim and Lemma 21 to obtain the required permutation
Perm(t).

7 Examples of ranking and unranking

We show on representative examples how the ranking and unranking algorithms
are working.

Ranking. When ranking π = (7, 2, 4, 1, 6, 5, 10, 9, 8, 3) we first find a permu-
tation ρ = (10, 9, 8, 3, 7, 2, 4, 1, 6, 5) cyclically equivalent to π and then a seed
ψ = (10, 9, 8, 3, 7, 2, 4, 6, 5) whose package perms(ψ) contains both π and ρ (in

case of two candidates for ψ we choose the parent). We have rank(π)−rank(ψ̃) =

(rank(π)− rank(ρ)) + (rank(ρ)− rank(ψ̃)) = (|W1|+ 3) + (SUM(2, 3)) = 268.
Next we compute route(ψ) by computing inversion vector of ψ. After that we
compute hub(ψ) = (10, 3, 2, 1, 9, 8, 7, 6, 5), and

ψ2 = anchor(ψ) = son(hub(ψ), 3) = (10, 2, 1, 9, 8, 7, 4, 6, 5),

height(ψ2) = ∆(n− 3, 3) = 5, rank(ψ̃2)− rank(ψ̃1) = SUM(5, 5) = 83246,

15

height(ψ1) = ∆(5, 5) = 3, rank(ψ̃1)− rank(ψ̃) = SUM(3, 4) = 1955.

2(n-1)+3|V10|=1209612

SUM(3,4)=1955

SUM(5,5)=83246

SUM(2,3)=184

|W1|+3=84

SUM(7,3)-|W6|-2=289621

(10,3,2,1,9,8,7,4,6,5)

(10,2,1,9,8,3,7,4,6,5)

=(10,1,9,8,3,7,2,4,6,5)

=(10,9,8,3,7,2,4,1,6,5)

=(7,2,4,1,6,5,10,9,8,3)

(3,2,1,9,8,7,6,5,4,10)

(10,2,1,9,8,7,4,6,5)

(10,1,9,8,3,7,4,6,5)

(10,9,8,3,7,2,4,6,5)

(10,3,2,1,9,8,7,6,5)

Figure 6: Illustration of ranking and unranking of π = (7, 2, 4, 1, 6, 5, 10, 9, 8, 3).
We have π ∈ perms(ψ), and route(ψ) = (3, 5, 4).

Now it is enough to compute rank(ψ̃2) (knowing that ψ̃2 belongs to the
hub), which again is computed in two steps – rank of the first permutation of
perms(hub(ψ)) (outside of the starting path) is equal to 2n−2+3|V10| = 1209612

and ψ̃2 occurs SUM(7, 3)−|W6|−2 = 289621 permutations later. After summing
all the values our final output is:

rank(7, 2, 4, 1, 6, 5, 10, 9, 8, 3) = 1584702.

16

Unranking. Forget now that we already know the permutation with rank
1584702. When looking for a permutation with rank t we first check if Perm(t)
is not in the starting path (t > 2n− 2) and then after subtracting 2n− 2 = 18
from t we divide it by |V10|, to get t1 = 3, t2 = 375090. We now know, that the
permutation belongs to bunch((10, 3, 2, 1, 9, 8, 7, 6, 5)).

We have

SUM(7, 3)− |W6| − 5 ≤ 375090 < SUM(7, 4)− |W6| − 6,

hence we know, that the permutation belongs to the σ3W∆(7,3)γ5 part of V10.
We decrease the rank by SUM(7, 3)− |W6| − 2 = 289621 to get 85469.

Then we descend down the seed tree by choosing the fifth son, because
SUM(5, 5) − 5 ≤ 85469 < SUM(5, 6) − 6, with the remaining rank 85469 −
SUM(5, 5) = 2223. Next we go to the third son since SUM(3, 4)− 4 ≤ 2223 <
SUM(3, 5)− 5, with the remaining rank equal 2223− SUM(3, 4) = 268.

In the next step we know that SUM(2, 3)− 3 ≤ 268 < SUM(2, 4)− 4, and
also that 268 > SUM(2, 3) + |W1|, hence further descent is not needed.

In this moment we came to an unknown seed ψ for which we know route(ψ) =
(3, 5, 4), and anchor(ψ) = son((10, 3, 2, 1, 9, 8, 7, 6, 5), 3) = (10, 2, 1, 9, 8, 7, 4, 6, 5).
Using Claim 26 we recover ψ = (10, 9, 8, 3, 7, 2, 4, 6, 5). Now we know that
the required permutation is in perms(ψ), and it equals Perm(ψ, 268), then
we use Lemma 21 to obtain Perm(ψ, 268) = (7, 2, 4, 1, 6, 5, 10, 9, 8, 3), and this
permutation is our final output.

17

8 Cyclic στ-sequence

A στ -sequence of permutations is cyclic if the last permutation is equal to the
first one. Sawada and Williams in [5] have given an iterative construction of a
cyclic στ -sequence. They have shown how to partition the graph of permutations
into two edge disjoint cycles (2-cycles cover) C ′, C ′′ of respectively inner and
outer cycles. Below we give an example of this structure for n = 7.

W1

W3

W1

W2

W4

W1W2

W3

W1

W2

W3

W1

W2

W3

W2

We define ”switches” as permutations of the form

(x, n, x⊕ 1, x⊕ 2, ..., x	 1)

for 1 ≤ x < n. In other words they are cyclic shifts of the identity permutation
(1, 2, 3, ..., n− 1) in which n is inserted into the second position.

Observation 27. There is a one switch on the inner cycle C ′ and n−2 switches
on the outer cycle. C ′′

8.1 Sawada Williams construction of Hamiltonian cycle.

The algorithm basically computes the cycles C ′, C ′′, then the switches are
appropriately ordered as ∆1, ∆2, ...,∆n−1. Afterwards the outgoing edges for

18

the switches are redirected by choosing the outgoing τ -edge (in the 2-cycle cover
these were σ-edges). More explicitly we redirect:

for each i > 1 redirect ∆i
−→τ σ(∆i−1), additionally redirect ∆1

−→τ σ(∆n−1).

8.2 Two cycles construction

Let ⊗ denote a modified addition modulo n− 2, where n− 1⊗ 1 = 2. It gives a
cyclic order of elements {2, ..., n− 1}, with attached element 1 (1⊗ 1 = 2). For
a 6= 2 we write a� 1 = a− 1 and 2� 1 = n− 1.

Lemma 28. The outer sequence C ′′ is represented (after removing one edge)
by the linear sequence

SEQ′′ = (σWn−3γn−3γ2)(σWn−4γn−3γ2)n−3,

and the inner sequence C ′ is represented by the linear sequence SEQ′ = Un−2,
where

U = γn−4 ·
n−3∏
i=3

σiW∆(n−3,i) γn−2−i · γn−1;

Proof. First we need to prove, that for ψ outside of hub

GEN(ψ̃, Wk) = bunch(ψ) and Wk(ψ̃) = ψ(n−1),

for bunch(ψ), ψ̃, ψ(n−1) and height(ψ) defined as before, but after replacing ⊕
with ⊗. For k ≥ 1 the ordering of elements (which element is considered missing
in the seed, and thus equal to p2 ⊕ 1 or p2 ⊗ 1) is in fact inherited from the
parent seed (the first k elements after n in the permutation), thus there is no
change from the proof of 8. For ”k = 0” (the cycle of permutations which belong
to perms(ψ) for just one ψ) the missing element is inserted just after n, thus
there can be no further descent in the tree of seeds and at the same time there
is only one permutation in the cycle for which the SW function gives a τ -edge.
Every hub seed has one child which is also a hub seed. In the previous construction
it was always son(ψ, 1). In this construction it is son(ψ, 2) as hub seeds are
those of a form (n, x, x� 1, ..., x⊗ 2, 1). Hence the construction divides the first
son from sons 3 to n−3 (and the cycle with W0). The outer cycle covers the first
sons of hub seeds, and the inner cycle covers the remaining ones. Son of each
hub seed have height n− 4 with one exception – seed (n, n− 3, n− 4, ..., 1, n− 1)
which is the first son of a hub seed (n, n− 2, n− 3, ..., 1) has height n− 3. Hence
the outer cycle has the stated representation (additional γ2 represents transition
to the second son – next hub seed). In the inner cycle each child of hub seeds has
the same height as in the previous construction (height(son(ψ, i)) = ∆(n− 3, i))
and are visited in the same order. After all those children are visited there
appears γn−4 which represents the ”return to the parent seed” (thus in this cycle
hub seeds are visited in the reversed order).

19

8.3 Alternative path construction

Claim 29. In the path obtained with the new method the sequence representing
it is equal to

(σWn−3γn−3γ2)(σWn−4γn−3γ2)n−4σWn−4γn−3σ
3Un−2

(with the last τ removed) It is equal to the concatenation of representations from
Lemma 28 with the ending τ removed in both representations and with σ added
between them.

Lemma 30. In the new path we can rank a permutation in O(n
√

log n) time
and unrank it in O(n logn

log logn).

Proof. Ranking algorithm in the previous construction contained four parts:

1. Counting rank(π)− rank(ψ) for π ∈ perms(ψ) in O(n).

2. Computing route(ψ) for a given ψ in O(n
√

log n).

3. Counting rank(ψ)− rank(anchor(ψ)) out of route(ψ) in O(n).

4. Ranking inside the hub in O(n).

With a few minor changes we can adjust it to the new path construction.
The first part does not really change (it is enough to know what are the missing
elements in the seed and its children).
In the second part the only difference is that in the order used in inversion vector
problem we must insert element 1 somewhere. As it is never a missing element,
we can insert it as a minimal element (or leave the order untouched if a2 = 1).
The third part is identical.
The biggest difference occurs in the fourth part – we first need to determine
to which cycle from the two cycle construction it belongs to. The permutation
belongs to the outer cycle when it belongs to perms of two seeds ψ, φ, where
φ = parent(ψ), and either ψ = son(φ, 1), or (ψ = son(ψ, 2) and it is one of three
first permutations in the cycle). In this case we must rank the permutation in

relation to φ̃ (rank in perms(φ) + |Wn−4| (or |Wn−3|) unless it is φ̃ or σ(φ̃))
and add

rank(φ̃) = |Wn−3|+ n+ 3 + (|Wn−4|+ n− 2) · (n− x− 2)

(where x = mis(φ)) if x 6= n− 1, and 1 if x = n− 1.
Otherwise it belongs to the inner cycle. In this case we rank it like in the normal
construction (in relation to the first permutation in perms(φ)), then we subtract
|Wn−4|+ n+ 3 (or |Wn−3|+ n+ 3) and add

(x− 2)|U |+ |Wn−3|+ n+ 3 + (n− 3) · (|Wn−4|+ n+ 2)

.
Unranking algorithm contained four parts as well:

1. Finding appropriate tree of seeds (or returning permutation if it belongs
to hub) in O(n).

2. Computing route(ψ) and rank(ψ) in O(n log log n).

20

3. Obtaining ψ out of route(ψ) in O(n logn
log logn).

4. Unranking in perms(ψ) in O(n).

Parts 2,3,4 remain unchanged (the only change is the use of ⊗ instead of ⊕).
In the first part we first

determine whether t < |Wn−3|+ n+ 3 + (n− 3) · (|Wn−4|+ n+ 2)

if that is the case we check if t < |Wn−3|+ n+ 3 (we unrank in the part with
Wn−3) and if that is not the case we divide t− |Wn−3| −n− 2 by |Wn−4|+n+ 2
(using integer division) and unrank it in appropriate three of seeds.

If t′ = t− (|Wn−3|+ n+ 3 + (n− 3) · (|Wn−4|+ n+ 2)) ≥ 0

we unrank t′ in the inner cycle – we divide t′ by |U | (using integer division) and
proceed as in the previous algorithm.

8.4 Polynomial construction for the cycle

W1

W3

W1

W2

W4

W1W2

W3

W1

W2

W3

W1

W2

W3

W2

6712345

1723456

57612344756123

3745612

2734561

754321

743261

732651

726541

765431

Lemma 31. There exist an SLP for Hamiltonian cycle of size O(n3).

21

Proof. Switch (x, n, x⊕1, ..., x	1) ∈ perms(ψ) for ψ = (n, x⊕1, x⊕3, ..., x	1, x).
For x 6= 1 hub(ψ) = (n, x�1, x�2, ..., x⊗1, 1), and anchor(ψ) = son(hub(ψ), 1),
thus each Wn−4 (or Wn−3) on the outer cycle contains one such switch. For
ψ = (n, 2, 4, ..., n−1, 1) hub(ψ) = (n, n−3, n−4, ..., 2, n−1, 1) and anchor(ψ) =
son(hub(ψ), 3), thus the remaining switch belongs to one of the U parts of the
inner cycle.
We can divide each such part into two – the one before the switch and the one
after it. Each such part can be represented by an SLP of size O(n2) as a word
Wk can be divided at most once for each k and x (each other does not contain a
switch, thus remain undivided).

Lemma 32. We can rank and unrank in the cycle in O(n2 ·
√

log n).

Proof. Scheme of algorithm:
We count ranks for all the ”switches” in the path in O(n2 ·

√
log n). Then we

count differences between ranks of two next ”switches” (in the order of the path)
and ranks of switches in the cycle (iterating through switches in the order of the
cycle) in O(n) total time and space.
Rank:

1. Rank permutation in path in O(n ·
√

log n).

2. Find last ”switch” with smaller or equal path rank, and count the difference
(if rank is smaller then the rank of first switch we count everything modulo
n!) in O(n).

3. Add the difference to cycle rank of that ”switch”.

Unrank:

1. Find last ”switch” with smaller or equal cycle rank and count the difference
in O(n).

2. Add the difference to path rank of that ”switch”.

3. Unrank in the path with the new value in O(n logn
log logn).

8.5 Efficient construction for cycle

Lemma 33. Routes of (seeds which perms contain) ”switches” are always of
the form (n− 3, n− 4, ..., 1) with 0 or 1 element erased (for example (6, 5, 3, 2, 1)
for n = 9) or are equal to (n− 3, n− 4, ..., 3). Furthermore we can compute all
the ranks of ”switches” on the new path in O(n) total time.

Proof. Each ”switch” π = (x, n, x ⊕ 1, ..., x 	 1) belongs to perms of just one
seed namely π ∈ perms(ψ) for ψ = (n, x⊕ 1, x⊕ 3, x⊕ 4, ..., x) (height(ψ) = 1).

When going through parent edges until reaching hub(ψ) each time the missing
symbol is inserted after n shifting all elements till x⊕ 1 by one, and erasing the
element just after it (jumping over element 1). Hence each time parent edge
is used we erase element closer to right by one with the exception of the one
time when 1 appears just after x⊕ 1 for the first time. In that case the element

22

erased next is closer to the right by two. Thus each route is built of numbers
decreasing by ones (sometimes with one number missing). Each time the height
of the tree rises by exactly one.

When x 6= 1, then anchor(ψ) = son(hub(ψ), 1), thus the route ends with 1.
If x = n − 1 then n − 1 ⊕ 1 = 1, thus 1 is never jumped over. As we start in
a seed with tree of height 1, route(ψ) = (n− 3, n− 4, ..., 1) (this is the switch
which appears in the Wn−3 part).
If 1 < x < n− 2, then 1 is jumped over at the x-th step from hub(ψ) resulting
in route(ψ) = (n− 3, ..., x+ 1, x− 1, ..., 1).
When x = n − 2 the jump over appears inside ψ, and thus does not touch
route(ψ) = (n− 4, ..., 1).
When x = 1 route(ψ) = (n− 3, ..., 3) (this is the switch from Wn−5 in the inner
cycle).

When x 6= n− 2 π appears on the n− 3-rd place of n− 2-nd (last) cycle in
perms(ψ). When x = n− 2 the jump over appears inside ψ and thus π appears
on the n− 4-th place of n− 3-rd cycle in perms(ψ).

As the heights of trees grow always by 1

rank(ψ)− rank(anchor(ψ)) =

|route(ψ)|−2∑
i=0

SUM(i+ 2, route(ψ)[i]).

For 1 < x < n− 3 these two values for x and x+ 1 differs by

SUM(n− x− 2, x+ 1)− SUM(n− x− 2, x) = |Wn−x−3|+ n.

Hence all the rank(ψ)−rank(anchor(ψ)) can be counted in O(n) total time (we
get 4 cases - each counted in O(n) (see Lemma 18), plus O(n) time to compute
the other ones by adding the differences). Each anchor(ψ) is the first in a part
of the sequence (U or (σWγn−3γ2)), thus all rank(anchor(ψ)) can be counted
in O(n) total time. rank(π)− rank(ψ) = (n− 3) · (n+ 1) (or (n− 4) · (n+ 1)
for x = n− 2).

Theorem 34. στ -cycle from [5] has a O(n2) SLP representation.

Proof. Each tree of seeds in the outer cycle (and one in the inner) is divided into
two parts. Each tree is divided differently, but in each Wk the division happens
either in the last Wk−1 part, or the penultimate one, thus it is enough to divide

the definitions of Wk into three parts Wk = W
(1)
k (Wk−1γkσ

n−k−1Wk−1)W
(2)
k ,

and for each tree divide one of the Wk−1 words.

More precisely for (2 ≤ k ≤ n− 3) let:

W
(1)
k = (τ

n−k−4∏
i=1

σiW∆(k,i)γn−2−i)σ
n−k−2

W
(2)
k = γk−1σ

n−kWk−2W
(2)
k−1 (W

(2)
1 = τ)

W
(3)
k = W

(1)
k Wk−1γkσ

n−k−1 W
(4)
k = γkσ

n−k−1Wk−1W
(2)
k (= W

(2)
k+1)

23

The division of the tree with (x, n, x⊕ 1, ..., x	 1) for 2 ≤ x ≤ n− 3:

V (x,1)
n = W

(1)
n−4W

(1)
n−5...W

(1)
n−x−1W

(3)
n−x−2...W

(3)
2 (γn−1)n−3σn−3

V (x,2)
n = γ1W

(2)
2 ...W

(2)
n−x−2W

(4)
n−x−1...W

(4)
n−4

V (1,1)
n = W

(3)
n−5...W

(3)
2 (γn−1)n−3σn−3 V (1,2)

n = γ1W
(2)
2 ...W

(2)
n−4

V (n−2,1)
n = W

(1)
n−4...W

(1)
2 (γn−1)n−4σn−4 V (n−2,2)

n = γ2γn−1W
(4)
2 ...W

(4)
n−4

V (n−1,1)
n = W

(3)
n−3...W

(3)
2 (γn−1)n−3σn−3 V (n−1,2)

n = γ1W
(2)
2 ...W

(2)
n−3

C = V (1,2)
n Un−3γn−4σ3V

(1,1)
n τ

n−3∏
i=0

(V ((n−1)�2i,2)
n γn−3γ2σ

1V ((n−2)�2i,1)
n τ)

Theorem 35. In the cycle we can rank in O(n
√

log n) time and unrank in
O(n logn

log logn) time.

Proof. We use the algorithm from 32, just count ranks of ”switches” in O(n)
total time.

References

[1] Timothy M. Chan and Mihai Patrascu. Counting inversions, offline orthogonal
range counting, and related problems. In Moses Charikar, editor, Proceedings
of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 161–173.
SIAM, 2010.

[2] Paul F. Dietz. Optimal algorithms for list indexing and subset rank. In
Algorithms and Data Structures, Workshop WADS ’89, Ottawa, Canada,
August 17-19, 1989, Proceedings, pages 39–46, 1989.

[3] Frank Ruskey and Aaron Williams. An explicit universal cycle for the
(n-1)-permutations of an n-set. ACM Trans. Algorithms, 6(3):45:1–45:12,
2010.

[4] Wojciech Rytter. Grammar compression, LZ-encodings, and string algo-
rithms with implicit input. In Automata, Languages and Programming: 31st
International Colloquium, ICALP 2004, Turku, Finland, July 12-16, 2004.
Proceedings, pages 15–27, 2004.

[5] Joe Sawada and Aaron Williams. Solving the sigma-tau problem. URL:
http://socs.uoguelph.ca/∼sawada/papers/sigmaTauCycle.pdf.

[6] Joe Sawada and Aaron Williams. A Hamilton path for the sigma-tau problem.
In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10,
2018, pages 568–575, 2018.

[7] Joe Sawada, Aaron Williams, and Dennis Wong. A surprisingly simple de
Bruijn sequence construction. Discrete Mathematics, 339(1):127–131, 2016.

24

http://socs.uoguelph.ca/~sawada/papers/sigmaTauCycle.pdf

	1 Introduction
	2 Preliminaries
	2.1 Structure of seed graphs
	2.2 The pseudo-tree STn of seeds
	2.3 A version of Sawada-Williams algorithm

	3 Compact representation of bunches of permutations
	4 Compact representation of the whole generation
	5 Ranking
	6 Unranking
	7 Examples of ranking and unranking
	8 Cyclic sigma-tau-sequence
	8.1 Sawada Williams construction of Hamiltonian cycle.
	8.2 Two cycles construction
	8.3 Alternative path construction
	8.4 Polynomial construction for the cycle
	8.5 Efficient construction for cycle

