Skip to main content

Orbits of Abelian Automaton Groups

  • Conference paper
  • First Online:
Language and Automata Theory and Applications (LATA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11417))

Abstract

Automaton groups are a class of self-similar groups generated by invertible finite-state transducers [11]. Extending the results of Nekrashevych and Sidki [12], we describe a useful embedding of abelian automaton groups into a corresponding algebraic number field, and give a polynomial time algorithm to compute this embedding. We apply this technique to study iteration of transductions in abelian automaton groups. Specifically, properties of this number field lead to a polynomial-time algorithm for deciding when the orbits of a transduction are a rational relation. These algorithms were implemented in the SageMath computer algebra system and are available online [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartholdi, L.: Book review: combinatorial algebra: syntax and semantics. Bull. AMS 54(4), 681–686 (2017)

    Article  Google Scholar 

  2. Becker, T.: Embeddings and orbits of abelian automaton groups (2018). https://github.com/tim-becker/thesis-code

  3. Bondarenko, I., et al.: Classification of groups generated by 3-state automata over a 2-letter alphabet. Algebra Discrete Math. 1, April 2008

    Google Scholar 

  4. Brough, M., Khoussainov, B., Nelson, P.: Sequential automatic algebras. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 84–93. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69407-6_9

    Chapter  Google Scholar 

  5. Faugère, J.C., El Din, M.S., Spaenlehauer, P.J.: Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1, 1): algorithms and complexity. J. Symbolic Comput. 46(4), 406–437 (2011)

    Article  MathSciNet  Google Scholar 

  6. Grigorchuk, R.I., Nekrashevich, V.V., Sushchanskii, V.I.: Automata, dynamical systems and groups. Proc. Steklov Inst. Math. 231, 128–203 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Hungerford, T.W.: Algebra. Springer, New York (1974). https://doi.org/10.1007/978-1-4612-6101-8

    Book  MATH  Google Scholar 

  8. Ireland, K., Rosen, M., Rosen, M.: A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics. Springer, New York (1990). https://doi.org/10.1007/978-1-4757-2103-4

    Book  MATH  Google Scholar 

  9. Latimer, C.G., MacDuffee, C.C.: A correspondence between classes of ideals and classes of matrices. Ann. Math. 34(2), 313–316 (1933). http://www.jstor.org/stable/1968204

    Article  MathSciNet  Google Scholar 

  10. Lazard, D.: Solving zero-dimensional algebraic systems. J. Symbolic Comput. 13(2), 117–131 (1992). https://doi.org/10.1016/S0747-7171(08)80086-7. http://www.sciencedirect.com/science/article/pii/S0747717108800867

    Article  MathSciNet  MATH  Google Scholar 

  11. Nekrashevych, V.: Self-similar groups. Mathematical Surveys and Monographs. American Mathematical Society, Providence (2014)

    MATH  Google Scholar 

  12. Nekrashevych, V., Sidki, S.: Automorphisms of the binary tree: state-closed subgroups and dynamics of 1/2-endomorphisms. London Math. Soc. Lect. Note Ser. 311, 375–404 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Okano, T.: Invertible binary transducers and automorphisms of the binary tree. Master’s thesis, Carnegie Mellon University (2015)

    Google Scholar 

  14. Raney, G.N.: Sequential functions. J. ACM (JACM) 5(2), 177–180 (1958)

    Article  MathSciNet  Google Scholar 

  15. Robinson, R.M.: Conjugate algebraic integers on a circle. Mathematische Zeitschrift 110(1), 41–51 (1969). https://doi.org/10.1007/BF01114639

    Article  MathSciNet  MATH  Google Scholar 

  16. Stein, W.: Algebraic Number Theory, a Computational Approach. Harvard, Massachusetts (2012)

    Google Scholar 

  17. Sutner, K.: Abelian invertible automata. In: Adamatzky, A. (ed.) Reversibility and Universality. ECC, vol. 30, pp. 37–59. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73216-9_3

    Chapter  Google Scholar 

  18. Sutner, K., Lewi, K.: Iterating inverse binary transducers. J. Automata, Lang. Comb. 17(2–4), 293–313 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowlegements

The authors would like to thank Eric Bach for his helpful feedback on a draft of this paper. We also thank Evan Bergeron and Chris Grossack for many helpful conversations on the results presented.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Becker, T., Sutner, K. (2019). Orbits of Abelian Automaton Groups. In: Martín-Vide, C., Okhotin, A., Shapira, D. (eds) Language and Automata Theory and Applications. LATA 2019. Lecture Notes in Computer Science(), vol 11417. Springer, Cham. https://doi.org/10.1007/978-3-030-13435-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13435-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13434-1

  • Online ISBN: 978-3-030-13435-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics